Ask Math Expert


Home >> Math

Decision-making Under Conditions of Risk

With decision-making under conditions of risk all possible states of nature are known and the decision maker has sufficient knowledge to assign probabilities to their likelihoods of occurrence. These probabilities may range from subjective assignments based upon the decision maker's feelings and experience to objective assignments based on the collection and analysis of numerous data related to the states of nature.  

The most popular method used to evaluate these types of decisions is the use of expected value.

Example 

A discounting clothing store chain purchases shirts from a manufacturer for Rs.100 each. The store will initially sell the shirts for Rs.150 each. It will then sell all unsold items for Rs.75 each to another discounter.

Historical data have been gathered which confirm that monthly demand for the item assumes four possible values. The table gives this demand information along with their respective probabilities of occurrence. The store is trying to decide how many units of the item to stock in a month. Its goal is to select the quantity which maximizes expected monthly profit.

Estimate of demand

Probability

3,000

0.20

5,000

0.25

8,000

0.45

10,000

0.10

To calculate the optimum stock level which maximizes the profit we have to construct the conditional profit table, as shown below. This table summarizes the monthly profit which would result given the selection of a particular stock level and the occurrence of a specific level of demand. The table also reflects the losses that occur when the remaining stock is sold to the discounter at the end of the month and it does not take into account the additional profit it lost when customers demand more than the store has stocked.

Conditional Profit Table

Stock Decision (Probability)

Possible demand

3,000
 (0.2)

5,000
 (0.25)

8,000
 (0.45)

10,000
 (0.1)

3,000

5,000

8,000

10,000

1,50,000

1,00,000

  25,000

 -25,000

1,50,000

2,50,000

1,75,000

1,25,000

1,50,000

2,50,000

4,00,000

3,50,000

1,50,000

2,50,000

4,00,000

5,00,000

 

The conditional profit values are determined by computing the total profit from units sold and subtracting from this any loss which would have to be absorbed because of overstocking. For example, if the chain store decides to stock 3,000 shirts it always results in a conditional profit of Rs.1,50,000 [3,000 (150 - 100)], because if the demand is for more than 3000 shirts, all the shirts stocked will be sold.

But, if the chain store decides to stock 5,000 shirts and the demand is 3,000 shirts, the conditional profit is equal to the total profit of selling 3,000 shirts and the loss incurred by overstocking 2,000 shirts, where loss incurred because of overstocking is the difference between the cost of the remaining shirts and the sale price of these shirts to another discounter for Rs.75. Thus, conditional profit = (3,000 x 50)          - (2000 x 25) = Rs.1,00,000.

The conditional profits for other stock decisions are also calculated in a similar manner.

The expected daily profits for each stock decision can be determined by weighing each conditional profit by its likelihood of occurrence (which is the probability of the corresponding level of demand). The table below gives the conditional profit for each level of stock decision.

Expected Monthly Profit Computation

Stock 3,000 shirts

Conditional Profit (Rs.)

Probability of Occurrence

Expected Monthly Profit (Rs.)


1,50,000

0.20

30,000

1,50,000

0.25

37,500

1,50,000

0.45

67,500

1,50,000

0.10

    15,000

 

 

1,50,000

Stock 5,000 units

Conditional Profit (Rs.)

Probability of Occurrence

Expected Monthly Profit (Rs.)


1,00,000

0.20

20,000

2,50,000

0.25

62,500

2,50,000

0.45

1,12,500

2,50,000

0.10

     25,000

 

 

2,20,000

Stock 8,000 units

Conditional Profit (Rs.)

Probability of Occurrence

Expected Monthly Profit (Rs.)


25,000

0.20

5,000

1,75,000

0.25

43,750

4,00,000

0.45

1,80,000

4,00,000

0.10

    40,000

 

 

2,68,750

Stock 10,000 units

Conditional profit (Rs.)

Probability of Occurrence

Expected Monthly Profit (Rs.)


-25,000

0.20

- 5,000

1,25,000

0.25

31,250

3,50,000

0.45

1,57,500

5,00,000

0.10

     50,000

 

 

2,33,750

On the basis of expected monthly profits, the best decision is to stock 8,000 shirts, resulting in an expected (average) profit of Rs.2,68,750.

Math, Academics

  • Category:- Math
  • Reference No.:- M9507790

Have any Question?


Related Questions in Math

Questions -q1 prove the following identitiesa sinx y sinx

Questions - Q1. Prove the following identities a. sin(x + y) + sin(x - y) = 2 sin x cos y b. sec(x - y) = cos(x + y)/(cos 2 x - sin 2 y) c. tan 2 x - sin 2 x = (tan x sin x) 2 Q2. Solve the following equations for x ∈ [0 ...

Maths assignment - 1 analysis of a data setusing a

Maths Assignment - 1. Analysis of a data set Using a continuous data set you are requested to collect in the types of data and gathering data section, perform a statistical analysis on your data. You have opportunities t ...

Questions - provide solution to the following questionsq1

Questions - Provide solution to the following questions: Q1. Evaluate the following: ∫xsin3xdx Q2. If , then for what value of α is A an identity matrix? Q3. The line y = mx + 1 is a tangent to the curve y 2 = 4x. Find t ...

Assessment taskpractical investigation- question 1 requires

Assessment Task Practical Investigation - Question 1 requires selecting reference points from the graph. It is expected that each student will choose different reference points to other students. Take note of the criteri ...

1 suppose that n 10088821 is a product of two distinct

1. Suppose that n = 10088821 is a product of two distinct primes, and Φ(n) = 10082272. Determine the prime factors of n. 2. It is easy to show that the converse of Fermat's Theorem does not hold; i.e., the congruence a n ...

Assignment -question 1 let t and or 0 1 be a boolean

Assignment - Question 1. Let (T, ∧, ∨,', 0, 1) be a Boolean Algebra. Define ∗ : T × T → T and o : T × T → T as follows: x ∗ y := (x ∨ y)' x o y := (x ∧ y)' (a) Show, using the laws of Boolean Algebra, how to define x ∗ y ...

Assignment - provide solution to the following questionsq1

Assignment - Provide solution to the following questions: Q1. Evaluate the following: ∫xsin3x dx Q2. If , then for what value of α is A an identity matrix? Q3. The line y = mx + 1 is a tangent to the curve y 2 = 4x. Find ...

Question 1 what is the nth order approximation using taylor

Question: 1. What is the nth order approximation using Taylor series? 2. What is Error Propagation? 3. Please explain what the total numerical error is? Please illustrate how the change of step size will affect the total ...

Mathematics- algebraic geometry problemlet k denotes an

Mathematics- Algebraic Geometry Problem Let K denotes an algebraically closed field and let P 1 be constructed as in Example 5.5(a) in Gathmanns notes, i.e. P 1 is the gluing of X 1 = A 1 and X 2 = A 1 along  the open su ...

Mathematics- algebraic geometry problemlet k denotes an

Mathematics- Algebraic Geometry Problem Let K denotes an algebraically closed field and let P 1 be constructed as in Example 5.5(a) in Gathmanns notes, i.e. P 1 is the gluing of X 1 = A 1 and X 2 = A 1 along  the open su ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As