Consider the quadratic expression representing displacement of an object thrown toward earth at an initial velocity of 32 ft / sec from a height of 128 ft.
h(t) = -16t2 - 32t + 128
For this expression, determine the GCF (Greatest Common Factor) of our three coefficients and, as in exercise one, express h(t) as a product of this GCF and a resulting trinomial. Factor our resulting trinomial into a product of two binomials, thus completely factoring our expression h(t). What does a solution, or zero, of the equation
-16t2 - 32t + 128 = 0
represent? Determine the two solutions.