Ask Question, Ask an Expert

+61-413 786 465

info@mywordsolution.com

Ask Math Expert


Home >> Math

Chain Rule :  If f(x) and g(x) are both differentiable functions and we describe F(x) = (f. g)(x) so the derivative of F(x) is F′(x) = f ′(g(x)) g′(x).

 Proof

We will start off the proof through defining u = g(x) and considering that in terms of this definition what we are going asked to prove,

(d/dx)[f(u)] = f'(u) (du/dx)

Let's consider the derivative of u(x) (again, keep in mind we have defined u(g(x)) and therefore u actually is a function of x) that we know exists since we are assuming that g(x) is differentiable. Through definition we contain,

u'(x) = limh→0 (u(x + h) - u(x)/h)

Remember as well that,

limh→0 ((u(x + h) - u(x)/h) - u'(x))

= limh→0 (u(x + h) - u(x)/h) - limh→0 u'(x)

= u'(x) - u'(x) = 0

Now, describe as,

If h ≠ 0 then v(h) = (u(x + h) - u(x))/h - u'(x)

If h = 0 then v(h) = 0

and remember that limh→0v(h) =0 = v(0) and therefore v(h) is continuous at h = 0.

Now if we suppose that h ≠ 0 we can rewrite the definition of v (h) to find,

u(x + h) = u(x) + h(v( h) + u′(x)                                    (1)

 Now, notice that (1) is in fact valid even if we let h ≠ 0 and so is valid for any value of h.

After that, since we also know that f(x) is differentiable we can do something same.  Though, we're going to utilize a diverse set of letters or variables here for causes which will be apparent in a little.

Therefore define,

If k ≠ 0 then w(k) = (f(z + k) - f(z))/k - f'(x)

If k = 0 then w(k) = 0

We can suffer a same argument that we did above thus demonstrate that w(k) is continuous at k = 0 and that,

 f(z + k) = f(z) + k(w(k) + f ′(z))                                    (2)

Do not get excited regarding the different letters at this point all we did was, by use k in place of h and let x = z. Nothing fancy at this time, although the change of letters will be helpful down the road.

Then, to this point this doesn't look like we have actually done anything hwihc gets us even close to giving the chain rule. The work above will produce very significant in our proof however therefore let's get going onto the proof.

What we require to do at this time is utilize the definition of the derivative and estimate the following limit.

(d/dx)[f[u(x)]] = limh→0 (f[u(x + h) - f(u(x))])/h                                   (3)

Remember that even if the notation is more than a little messy if we utilize u(x) in place of u we require reminding ourselves here that u actually is a function of x.

Let's this time use (1) to rewrite the u(x+ h) and yes the notation is going to be unpleasant although we are going to have to deal along with this. By using (1), the numerator into the limit above turns into,

f[u(x + h)] - f[u(x)] = f[u(x) + h(v(h) + u'(x))] - f[u(x)]

If we then describe z = u(x) and k = h(v(h)) + u′(x)) we can utilize (2) to then write this as,

f[u(x + h)] - f[u(x)] = f[u(x) + h(v(h) + u'(x))] - f[u(x)]

= f[u(x)] + h(v(h) + u'(x))(w(k) + f'[u(x)]) - f[u(x)]

= h(v(h) + u'(x)) (w(k) + f'[u(x)])

Remember that we were capable to cancel a f[u(x)] to simplify all things up a bit.  Also, remember that the w(k) was intentionally left that method to maintain the mess to a minimum now, just notice that k = h(v(h) + u′(x)) here as which will be significant at this point in a little. Let's here go back and keep in mind that all that was the numerator of our limit, (3). Plugging it in (3) provides,

d/dx)[f[u(x)]] = limh→0 (h(v(h) + u'(x)) (w(k) + f'[u(x)])

= limh→0 (v(h) + u'(x))(w(k) + f'[u(x)])

Notice that the h's canceled out.  Next, recall that k = h (v(h) + u′ (x) and therefore,

= limh→0 k = lim h→0 (h(v(h) + u′(x)) = 0

Though, if limh→0 k = 0, as we have defined k anyway, so by the definition of w and the fact that we know w(k) is continuous at k = 0 we also know that,

limh→0 w(k) = w(limh→0 k)

= w(0)

= 0

And, recall that limh→0v(h) = 0. By using all of these facts our limit is,

d/dx)[f[u(x)]] = limh→0 (v(h) + u'(x)) (w(k) + f'[u(x)])

= u'(x) f'[u(x)]

= f'[u(x)] du/dx

It is exactly what we required to prove and therefore we're done.

Math, Academics

  • Category:- Math
  • Reference No.:- M9619947

Have any Question?


Related Questions in Math

Question 1 - for the ivp of ode y t-1e-y y1 0 find an

Question 1 - For the I.V.P of ODE y' = (t-1)e -y , y(1) = 0, find an approximation to y(1.2) using the following numerical methods with Δt = 0.1. Compare the numerical solution with the exact solution and compute the err ...

Assignment - provide solution to the following questionsq1

Assignment - Provide solution to the following questions: Q1. Evaluate the following: ∫xsin3x dx Q2. If , then for what value of α is A an identity matrix? Q3. The line y = mx + 1 is a tangent to the curve y 2 = 4x. Find ...

Clarity succinctness writing your name and netid1

Clarity, succinctness, writing your name and Netid: 1 Indistinguishability 1. If {X n }n is computationally indistinguishable from {Y n } n , {Y n } n is computationally indistin- guishable from {Z n } n, then (select th ...

Questions -q1 prove the following identitiesa sinx y sinx

Questions - Q1. Prove the following identities a. sin(x + y) + sin(x - y) = 2 sin x cos y b. sec(x - y) = cos(x + y)/(cos 2 x - sin 2 y) c. tan 2 x - sin 2 x = (tan x sin x) 2 Q2. Solve the following equations for x ∈ [0 ...

Question you will recommend a course of action regarding

Question: You will recommend a course of action regarding strategic planning in light of the issue the healthcare organization is facing. Be sure to address the following: 1. Provide a brief summary of the issue facing t ...

Mathematics- algebraic geometry problemlet k denotes an

Mathematics- Algebraic Geometry Problem Let K denotes an algebraically closed field and let P 1 be constructed as in Example 5.5(a) in Gathmanns notes, i.e. P 1 is the gluing of X 1 = A 1 and X 2 = A 1 along  the open su ...

Assessment taskpractical investigation- question 1 requires

Assessment Task Practical Investigation - Question 1 requires selecting reference points from the graph. It is expected that each student will choose different reference points to other students. Take note of the criteri ...

1 suppose that n 10088821 is a product of two distinct

1. Suppose that n = 10088821 is a product of two distinct primes, and Φ(n) = 10082272. Determine the prime factors of n. 2. It is easy to show that the converse of Fermat's Theorem does not hold; i.e., the congruence a n ...

Assignment - solving the five question in the very details

Assignment - Solving the five question in the very details, thanks a lot. Question - Let a ∈ P n be a point. Show that the one-point set {a} is a projective variety, and compute explicit generators for the ideal I p ({a} ...

Mathematics- algebraic geometry problemlet k denotes an

Mathematics- Algebraic Geometry Problem Let K denotes an algebraically closed field and let P 1 be constructed as in Example 5.5(a) in Gathmanns notes, i.e. P 1 is the gluing of X 1 = A 1 and X 2 = A 1 along  the open su ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As