Ask Chemistry Expert

A spring has a relaxed length of 34 cm (0.34 m) and its spring stiffness is 12 N/m. You glue a 72 gram block (0.072 kg) to the top of the spring, and push the block down, compressing the spring so its total length is 12 cm. You make sure the block is at rest, then at time t = 0 you quickly move your hand away. The block begins to move upward, because the upward force on the block by the spring is greater than the downward force on the block by the Earth. Calculate approximately y vs. time for the block during a 0.21-second interval after you release the block, by applying the Momentum Principle in three steps each of 0.07-second duration.

To avoid buildup of small errors causing you to lose credit, in Step 2 we use your answers to Step 1 even if they are not correct, and in Step 3 we use your answers to Step 2 even if they are not correct.

We will only consider the y components in the following calculations, because there is no change in x or z.

STEP 1

Force: Just after releasing the block, calculate the force exerted on the block by the spring, the force exerted on the block by the Earth, and the net force:

Fspring,y =  N

FEarth,y =  N

Fnet,y =  N

Momentum update: Just after releasing the block, the momentum of the block is zero. Approximate the average net force during the next time interval by the force you just calculated. At t = 0.07 seconds, what will the new momentum and velocity of the block be?

py =  kg · m/s

vy =  m/s

Position update: Initially the bottom of the block is at y = 0.12 m. Approximating the average velocity in the first time interval by the final velocity, what will be the new position of the bottom of the block at time t = 0.07 seconds?

y =  m

STEP 2

Force: At the new position, calculate the force exerted on the block by the spring, the force exerted on the block by the Earth, and the net force:

Fspring,y =  N

FEarth,y =  N

Fnet,y =  N

Momentum update: Approximate the average net force during the next time interval by the force you just calculated. At time t = 2 × 0.07 = 0.14 seconds, what will the new momentum and velocity of the block be?

py =  kg · m/s

vy =  m/s

Position update: Approximating the average velocity in the second time interval by the final velocity, what will be the new position of the bottom of the block at time t = 2 × 0.07 = 0.14 seconds?

y =  m

STEP 3

Force: At the new position, calculate the force exerted on the block by the spring, the force exerted on the block by the Earth, and the net force:

Fspring,y =  N

FEarth,y =  N

Fnet,y =  N

Momentum update: Approximate the average net force during the next time interval by the force you just calculated. At time t = 3 × 0.07 = 0.21 seconds, what will the new momentum and velocity of the block be?

py =  kg · m/s

vy =  m/s

Position update: Approximating the average velocity in the third time interval by the final velocity, what will be the new position of the bottom of the block at time t = 3 × 0.07 = 0.21 seconds?

y =  m

Chemistry, Academics

  • Category:- Chemistry
  • Reference No.:- M92662514
  • Price:- $30

Priced at Now at $30, Verified Solution

Have any Question?


Related Questions in Chemistry

Question 1bonding energyi draw an energy level diagram for

Question 1: Bonding Energy i. Draw an energy level diagram for a single Na ion and Cl ion. ii. Explain what is happening to the energy level between these two ions in terms of the Potential Energy. iii. Which process uti ...

Wat is the molarity to the hundredths place of 50 g hpo3

What is the molarity, to the hundredths place, of 5.0 g HPO3 in 300. mL of solution?

Describe how to assign anbspoxidation number from

Describe how to assign a Oxidation number from the text: The oxidation number of an atom in an elemental substance is zero. The oxidation number of a monatomic ion is equal to the ion's charge. Oxidation numbers for comm ...

How many grams of h2so4 must be dissolved into 0709 l of

How many grams of H2SO4 must be dissolved into 0.709 L of solution to generate a concentration of 0.303 M?

What could a source of error be during a titration lab that

What could a source of error be during a titration lab that is not a humans fault?

How many moles of magnesium ion are present in 525g

How many moles of magnesium ion are present in 5.25g Mg 3 (PO 4 ) 2 ?

What is the volume of a solution with a concentration of 12

What is the volume of a solution with a concentration of 1.2 M that contains 12 g of NaOH?

What is the molarity of a solution made by dissolving 200 g

What is the molarity of a solution made by dissolving 20.0 g of CrCl2 in 0.150 L of solution?

What is the mass of naoh present in grams given that a 100

What is the mass of NaOH present in grams, given that a 100. mL solution has a concentration of 0.125 M?

What is the volume of a solution in milliliters that

What is the volume of a solution, in milliliters, that contains 1.5 g LiNO3 and has a concentration of 0.40 M?

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As