Ask Chemistry Expert

A. Characterization of Standard Food Dyes.

  1. Prepare a developing tank by pouring 10 mL of the mobile phase (0.10% wt/v solution of NaCl  in H2O) into a 400 mL beaker and covering the beaker with Parafilm.  It is important that the air above the mobile phase become saturated with solvent vapor so that solvent does not evaporate from the stationary phase as the chromatogram develops. Therefore, be sure to keep the developing tank covered at all times.
  2. [Check with your TA for the size and type of filter paper to be used] With a pencil, draw a horizontal line 1.5 cm from the bottom edge of the chromatography paper. Draw vertical tick marks along this line every 2 cm (see fig 2(a)). Using a capillary and one of the standard dye solutions, make a spot on the chromatography paper at one of the marks. Keep the capillary with the correct dye to avoid cross contamination and waste of capillaries.  Try to keep your spots less than 4 mm in diameter. Allow the dye to dry and reapply the same dye in the same spot 1 or 2 times or until a sufficiently dark spot has been achieved. With a pencil, note the name of the dye below the spot.
  3. Repeat steps 2 and 3 for the remaining dyes across the bottom of the chromatogram.
  4. When the spots have been applied, put your name in pencil across the top of the chromatography paper, form the chromatography paper into a cylinder, and staple the edges of the paper together making sure to leave a gap between the edges as shown in fig 2(b). If the edges come into contact, solvent will not travel at a uniform speed up the chromatography paper and the components of the mixture will not move in a straight line.
  5. Place the chromatography paper into the developing tank, do not let it touch the sides of the tank and quickly replace the Parafilm cover. Make sure the level of the mobile phase is below the line of dyes on your paper. Allow the chromatogram to develop.
  6. When the solvent front is approximately 1 cm from the top of the chromatography paper, remove the chromatogram and lay it flat on a paper towel. Immediately mark the position of the solvent front with a pencil. The front will continue to move as the paper dries so it is important that you mark this position now. Measure and note the distance  the solvent front traveled.
  1. Draw an ellipse around each spot on the developed chromatogram and draw a horizontal line through the center of each spot. If a spot shows significant "tailing" make your horizontal line through the darkest part of the spot (see fig 3). Use the distance from the starting line (not the bottom of the paper!) to these horizontal lines to determine Ddye for each dye. Record distances and Rf values in your notebook. Recall:

Rf = Ddye / Dsolvent

 

  1. Place the chromatogram on edge, in the drying oven for 5 min or until dry. Take your dry chromatogram to the UV lamp area and observe the spots under illumination with a hand-held UV lamp on long-wavelength irradiation. Note the color of the observed fluorescence.

    WARNING: UV light can damage your eyes. Always point lamps away from you. Do not look into the UV lamps

    B.  Separation and Identification of Dyes Used to Coat M&M Candies.

  2. Do the M&M candies contain any of the standard dyes above? To begin to answer this question, take one M&M of each color to the UV lamp and see if they fluoresce. Note the color of any fluorescence you observe in your notebook.[Three pairs of students will share making two solutions each.]  To separate the dyes used to coat M&Ms, you must first prepare a solution of the coating dyes. To do this, place 4 M&M's of the same color into a small beaker. Add 3 mL of a 50/50 mixture of water and ethanol and swirl the solvent until the candy coating has dissolved. Remove the M&M's from the solvent before the chocolate center is exposed. You and your partner may coordinate with two other pairs of experimenters so that each pair only has to prepare 2 solutions that can be shared with the group.

  3. Prepare a second chromatogram like that in Part A using the 6 M&M solutions. The dye solutions prepared with the M&M candies are not as concentrated as the solutions of the standard dyes. You will need to spot these dye mixtures several (>5) times to obtain a sufficiently dark spot. [7-9 times may be necessary] Again, dry each spot between applications of the mixture to maintain as small and concentrated a spot as possible.

  4. Develop the chromatogram. Characterize the Rf value, color, and fluorescence characteristics of each dye observed. Remember that unlike the previous chromatogram, you are now separating mixtures of dyes and there may be as many as four components each with its own Rf value, color and fluorescence characteristics. Use all three characteristics to identify all components found in each M&M coloring.

Chemistry, Academics

  • Category:- Chemistry
  • Reference No.:- M91344452
  • Price:- $35

Guranteed 24 Hours Delivery, In Price:- $35

Have any Question?


Related Questions in Chemistry

Question 1bonding energyi draw an energy level diagram for

Question 1: Bonding Energy i. Draw an energy level diagram for a single Na ion and Cl ion. ii. Explain what is happening to the energy level between these two ions in terms of the Potential Energy. iii. Which process uti ...

Wat is the molarity to the hundredths place of 50 g hpo3

What is the molarity, to the hundredths place, of 5.0 g HPO3 in 300. mL of solution?

Describe how to assign anbspoxidation number from

Describe how to assign a Oxidation number from the text: The oxidation number of an atom in an elemental substance is zero. The oxidation number of a monatomic ion is equal to the ion's charge. Oxidation numbers for comm ...

How many grams of h2so4 must be dissolved into 0709 l of

How many grams of H2SO4 must be dissolved into 0.709 L of solution to generate a concentration of 0.303 M?

What could a source of error be during a titration lab that

What could a source of error be during a titration lab that is not a humans fault?

How many moles of magnesium ion are present in 525g

How many moles of magnesium ion are present in 5.25g Mg 3 (PO 4 ) 2 ?

What is the volume of a solution with a concentration of 12

What is the volume of a solution with a concentration of 1.2 M that contains 12 g of NaOH?

What is the molarity of a solution made by dissolving 200 g

What is the molarity of a solution made by dissolving 20.0 g of CrCl2 in 0.150 L of solution?

What is the mass of naoh present in grams given that a 100

What is the mass of NaOH present in grams, given that a 100. mL solution has a concentration of 0.125 M?

What is the volume of a solution in milliliters that

What is the volume of a solution, in milliliters, that contains 1.5 g LiNO3 and has a concentration of 0.40 M?

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As