Ask Algebra Expert

1.

a) State the Lagrange Theorem explaining any terms you use.

b) Let alpha, a member of S_11, be the permutation given by

alpha(1) = 7, alpha(2) = 5, alpha(3) = 1, alpha(4) = 2, alpha(5) = 8,
alpha(6) = 9, alpha(7) = 10, alpha(8) = 4, alpha(9) = 11, alpha(10) = 3, alpha(11) = 6.

Decompose the permutation alpha first as a product of disjoint cycles and then as a product of transpsitions. What are the order and sign of alpha and alpha^-1?

c) Show that if H and K are subgroups of a group G, then the intersect of H and K is also a subgroup of G. Show that if H and K have orders 9 and 8, respectively, then the intersect of H and K contains only one element.

2. State the First Isomorphism Theorem explaining any terms you use.

b) Let G = C* be the multiplicative group of nonzero complex numbers. Is the map f: G --> G a homomorphism, provided f is given by i) f(z) = iz, ii) f(z) = z^2, iii) f(z) = |z|, iv) f(z) = z-bar? Justify your answer.

c) Let K be a field and let G be the set of all matrices of the form
a b
0 c
where a, b, c is a member of K and a =/ 0, c =/ 0. Prove that G is a group under matrix multiplication. Prove that the map g: G --> K* x K* defined by
g * the matrix: a b = (a, c)
0 c
is a homomorphism. Here K* is the set of all non-zero elements of K, considered as a multiplicative group. Prove that the kernel of g is isomorphic to the additive group of the filed K. Deduce that the set H consisting of matrices of the form
1 b
0 1
is a normal subgroup of G and the quotient group G/H is isomorphic to K* xx K*. State clearly all results that you used.

3. a) Let V be a vector space over a field K and let f: V --> V be a linear map. Suppose v is a non-zero element of V and lambda is a member of K. Explain what it means to say that v is an eigenvector of f with eigenvalue lambda. Prove that V has a basis consisting of eigenvectors of f if and only if it has a basis with respect to which the matrix representing f is diagonal.

b) Let f: R --> R be a linear map given by
f * binomial (x y) = 1 -2 * (x y)
3 -1

Find the matrix A that corresponds to the mapping f in the basis
u_1 = (1 1), u_2 = (0 1).

c) Find the characteristic and minimal polynomials of the linear map f: R^3 --> R^3 given by the matrix
2 0 0
B = 1 0 1
1 -2 3

Is there a basis for R^3 for which the matrix of f is diagonal? Justify your answer.

4. a) Let V be an inner product spave and let g: V --> V be a map. Explain what it means to say that g is an isometry. Define what it means for a square matrix to be orthogonal. Prove that the product of two orthogonal matrices is orthogonal. Explain the relationship between orthogonal matrices and isometries.

b) Find a, b and c such that the matrix

1/3 0 a
2/3 1/sqrt(2) b
2/3 -1/sqrt(2) c

is orthogonal. Does this condition determine a, b and c uniquely?

c) Let V be a subspace of R defined by

V = {(x_1, x_2, x_3, x_4) is a member of R^4 | x_1 - x_2 + x_3 - x_4 = 0}

Find an orthonormal basis of V.

Algebra, Academics

  • Category:- Algebra
  • Reference No.:- M91749221
  • Price:- $20

Priced at Now at $20, Verified Solution

Have any Question?


Related Questions in Algebra

Assignment topic - abstract algebraq1 let r be the ring of

Assignment Topic - Abstract Algebra Q1: Let R be the ring of all 2 X 2 matrices over Z p , p is a prime. Let G be the set of elements x in the ring R such that det(x) ≠ 0. Find the order of G. Q2: If R is a commutative r ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As