Ask Physics Expert

1) The drawing shows a crystalline slab (n = 1.402) with a rectangular cross section. A ray of light strikes the slab at an incident angle of theta_1 = 44 degree, enters the slab, and travels to point P. This slab is surrounded by a fluid with a refractive index n. What is the maximum value of n such that total internal reflection occurs at point P?

2) Red light (n = 1.520) and violet light (n = 1.538) traveling in air are incident on a slab of crown glass. Both colors enter the glass at the same angle of refraction. The red light has an angle of incidence of 35.96 degrees. What is the angle of incidence of the violet light? Give your answer to four significant figures.

3) Horizontal rays of red light (lambda = 660 nm, in vacuum) and violet light (lambda = 410 nm, in vacuum) are incident on the prism shown in the drawing. The indices of refraction for the red and violet light are 1.651 and 1.698, respectively. What is the angle of refraction for (a) red light and (b) violet light as they emerge from the prism?

4) The drawing shows a horizontal beam of light that is incident on a prism. The base of the prism is also horizontal. The prism (n = 1.40) is surrounded by a liquid whose index of refraction is 1.6-. Determine the angle theta that the exiting light makes with the normal to the right face of the prism.

5) The distance between an object and its image formed by a diverging lens is 9.5 cm. The focal length of the lens is -4.4 cm. Find (a) the image distance and (b) the object distance.

6) For a distance of 55m, a photographer uses a telephoto lens (f = 390.0 mm) to take a picture of a charging rhinoceros. How far from the rhinoceros would the photographer have to be to record an image of the same size using a lens whose focal length is 50.0 mm?

7) A converging lens (f = 37.3 cm) is used to project an image of an object onto a screen. The object and the screen are 150 cm apart, and between them the lens can be placed at either of two locations. Find the two object distances, the smaller being the answer to part (a).

8) A nearsighted person cannot read a sign that is more than 5.0 m from his eyes. To deal with this problem, he wears contact lenses that do not correct his vision completely, but do allow him to read signs located up to distances of 12.2 m from his eyes. What is the focal length of the contacts?

9) The maximum angular magnification of a magnifying glass is 17.3 when a person uses it who has a near point that is 25.0 cm from his eyes. The same person finds that a microscope, using this magnifying glass as the eyepiece, has an angular magnification of -637. The separation between the eyepiece and the objective of the microscope is 17.9 c,. Obtain the focal length of the objective.

10) A telescope has an objective whose focal length is 20.8 m. Its eyepiece has a focal length of 7.45 cm. (a) What is the angular magnification of the telescope? (b) If the telescope is used to look at a lunar crater (diameter = 1960 m), what is the size (assume positive) of the first image, assuming the surface of the moon is 3.77 x 10^8 m from the surface of the earth? (c) How close does the crater appear to be when seen through the telescope?

11) A man in a boat is looking straight down at a fish in the water directly beneath him. The fish is looking straight up at the man. They are equidistant from the air/water interface. To the man, the fish appears to be 1.9 m beneath his eyes. To the fish, how far above its eyes does the man appear to be?

12) In Young's experiment a mixture of orange light (611 nm) and blue light (471 nm) shines on the double slit. The centers of the first-order bright blue fringes lie at the outer edges of a screen that is located 0.698 m away from the slits. However, the first-order bright orange fringes fall off the screen. By how much (toward or away from the slits) should the screen be moved, so that the centers of the first-order bright orange fringes just appear on the screen? It may be assumed that is small, so that sin(theta) is approximately equal to tan(theta).

13) A mixture of red light (lambda_vacuum = 605 nm) and green light (lambda_vacuum = 521 nm) shines perpendicularly on a soap film (n = 1.333) that has air on either side. What is the minimum nonzero thickness of the film, so that destructive interference removes the latter wavelength from the reflected light?

Diffraction Problems

1) How many dark fringes will be produced on either side of the central maximum if light (lambda = 668 nm) is incident on a single slit that is 4.17 x 10^-6 m wide?

2) The width of a slit is 2.0 x 10^-5 m. Light with a wavelength of 540 nm passes through this slit and falls on a screen that is located 0.41 m away. In the diffraction pattern, find the width of the bright fringe that is next to the central bright fringe.

3) In a single-slit diffraction pattern, the central fringe is 360 times wider than the slit. The screen is 15,000 times farther from the slit than the slit is wide. What is the ratio lambda/W, where lambda is the wavelength of the light shining through the slit and W is the width of the slit? Assume that the angle that locates a dark fringe on the screen is small, so that sin(theta) is approximately equal to tan(theta).

4) You are looking down at the earth from inside a jetliner flying at an altitude of 8500 m. The pupil of your eye has a diameter of 2.00 mm. Determine how far apart two cars must be on the ground if you are to have any hope of distinguishing between them in (a) red light (wavelength = 665 nm in vacuum) and (b) violet light (wavelength = 405 nm in vacuum).

5) Two stars are 4.1 x 10^11 m apart and are equally distant from the earth. A telescope has an objective lens with a diameter of 1.66 m and just detects these stars as separate objects. Assume that light of wavelength 600 nm is being observed. Also, assume that diffraction effects, rather than atmospheric turbulence, limit the resolving power of the telescope. Find the maximum distance that these stars could be from the earth.

6) Astronomers have discovered a planetary system orbiting a star, which is at a distance of 5.8 x 10^20 m from the earth. One planet is believed to be located at a distance of 1.7 x 10^11 m from the star. Using visible light with a vacuum wavelength of 550 nm, what is the minimum necessary aperture diameter that a telescope must have so that it can resolve the planet and the star?

7) The pupil of an eagle's eye has a diameter of 6.0 mm. Two field mice are separated by 0.012 m. From a distance of 184 m, the eagle sees them as one unresolved object and dives toward them at a speed of 19 m/s. Assume that the eagle's eye detects light that has a wavelength of 550 nm in a vacuum. How much time passes until the eagle sees the mice as separate objects?

8) Two concentric circles of light emit light whose wavelength is 581 nm. The larger circle has a radius of 3.2 cm, while the smaller circle has a radius of 1.0 cm. When taking a picture of these lighted circles, a camera admits light through an aperture whose diameter is 12.7 mm. What is the maximum distance at which the camera can (a) distinguish one circle from the other and (b) reveal that the inner circle is a circle of light rather than a solid disk of light?

9) For a wavelength of 480 nm, a diffraction grating produces a bright fringe at an angle of 21 degrees. For an unknown wavelength, the same grating produces a bright fringe at an angle of 32 degrees. In both cases the bright fringes are of the same order m. What is the unknown wavelength?

10) The wavelength of the laser beam used in a compact disc player is 634 nm. Suppose that a diffraction grating produces first-order tracking beams that are 0.93 mm apart at a distance of 2.8 mm from the grating. Estimate the spacing between the slits of the grating.

11) Three, and only three, bright fringes can be seen on either side of the central maximum when a grating is illuminated with light (lambda = 462 nm). What is the maximum number of lines/cm for the grating?

Physics, Academics

  • Category:- Physics
  • Reference No.:- M91624360
  • Price:- $100

Priced at Now at $100, Verified Solution

Have any Question?


Related Questions in Physics

Question oppositely charged parallel plates are separated

Question: Oppositely charged parallel plates are separated by 5.31 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? N/C (b) What is the ma ...

Question an object of mass m attached to a spring of force

Question: An object of mass m attached to a spring of force constant k oscillates with simple harmonic motion. The maximum displacement from equilibrium is A and the total mechanical energy of the system is E. What is th ...

Quesion when a nucleus of 235u undergoes fission it breaks

Quesion: When a nucleus of 235U undergoes fission, it breaks into two smaller, more tightly bound fragments. Part A: Calculate the binding energy per nucleon for 235U. Express your answer with the appropriate units. E=__ ...

Question a nylon rope used by mountaineers elongates 130 m

Question: A nylon rope used by mountaineers elongates 1.30 m under the weight of a 65.0-kg climber. If the rope is 45.0 m in length and 7.0 mm in diameter, what is Young's modulus for this material? The response must be ...

Question an object is 30 cm in front of a converging lens

Question: An object is 30 cm in front of a converging lens with a focal length of 10 cm. Use ray tracing to determine the location of the image. What are the image characteristics: (i) upright or inverted, (ii) magnifica ...

Question an object of mass m is traveling on a horizontal

Question: An object of mass m is traveling on a horizontal surface. There is a coefficient of kinetic friction µ between the object and the surface. The object has speed v when it reaches x=0 and encounters a spring. Th ...

Question in one of the classic nuclear physics experiments

Question: In one of the classic nuclear physics experiments at the beginning of the 20th century, an alpha particle was accelerated towards a gold nucleus and its path was substantially deflected by the Coulomb interacti ...

Question an object of mass m is dropped from height h above

Question: An object of mass m is dropped from height h above a planet of mass M and radius R. Find an expression for the object's speed as it hits the ground. Express your answer in terms of the variables m,M,h,R and app ...

Question one type of bb gun uses a spring-driven plunger to

Question: One type of BB gun uses a spring-driven plunger to blow the BB from its barrel. (a) Calculate the force constant of its plunger's spring if you must compress it 0.130 m to drive the 0.0580-kg plunger to a top s ...

Question an object is placed 30 cm to the left of a

Question: An object is placed 30 cm to the left of a converging lens that has a focal length of 15cm. Describe what the resulting image look like (i.e. image distance, magnification, upright or inverted images, real or v ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As