Ask Physics Expert

1- A spherical capacitor is made from two thin concentric conducting shells. The inner shell has radius r1, and the outer shell has radius r2. What is the fractional difference in the capacitances of this spherical capacitor and a parallel plate capacitor made from plates that have the same area as the inner sphere and the same separation d = r2 - r1 between plates? (Use the following as necessary: r1, r2, and ε0.)

2- Four capacitors with capacitances C1 = 3.4 nF, C2 = 2.2 nF, C3 = 1.6 nF, and C4 = 5.3 nF are wired to a battery with V = 10.3 V, as shown in the figure. What is the equivalent capacitance of this set of capacitors?

936_Untitled 2.png

3- A potential difference of V = 80.0 V is applied across a circuit with capacitances C1 = 14.5 nF, C2 = 4.00 nF, and C3= 26.5 nF, as shown in the figure. What is the magnitude and sign of q3l, the charge on the left plate of C3 (marked by point A)? What is the electric potential, V3, across C3? What is the magnitude and sign of the charge q2r, on the right plate of C2 (marked by point B)?

 

1694_Untitled 2.png


4- Fifty-two parallel plate capacitors are connected in series. The distance between the plates is d for the first capacitor, 2d for the second capacitor, 3d for the third capacitor, and so on. The area of the plates is the same for all the capacitors. Express the equivalent capacitance of the whole set in terms of C1 (the capacitance of the first capacitor).

5- A 7000-nF parallel plate capacitor is connected to a 2.4-V battery and charged. (a) What is the charge Q on the positive plate of the capacitor? (b) What is the electric potential energy stored in the capacitor? The 7000-nF capacitor is then disconnected from the 2.4-V battery and used to charge three uncharged capacitors, a 100-nF capacitor, a 200-nF capacitor, and a 300-nF capacitor, connected in series. (c) After charging, what is the potential difference across each of the four capacitors? d) How much of the electrical energy stored in the 7000-nF capacitor was transferred to the other three capacitors?

24.48. The Earth is held together by its own gravity. But it is also a charge-bearing conductor. (a) The Earth can be regarded as a conducting sphere of radius 6371 km, with electric field E = (-150. V/m) at its surface, where is a unit vector directed radially outward. Calculate the total electrostatic potential energy associated with the Earth's electric charge and field. (b) The Earth has gravitational potential energy, akin to the electrostatic potential energy. Calculate this energy, treating the Earth as a uniform solid sphere.(Hint: dU = -(GM/r)dM. The mass of the Earth is 5.97 1024 kg. Assume that the density of the Earth is uniform.) (c) Use the results of parts (a) and (b) to address this question: To what extent do electrostatic forces affect the structure of the Earth?

6- A 2.1-nF parallel plate capacitor with a sheet of Mylar (κ = 3.1) filling the space between the plates is charged to a potential difference of 150 V and is then disconnected. (The initial capacitance including the dielectric is 2.1 nF.) (a) How much work is required to completely remove the sheet of Mylar from the space between the two plates? (b) What is the potential difference between the plates of the capacitor once the Mylar is completely removed?

7- A proton traveling along the x-axis at a speed of 5.0 * 106 m/s enters the gap between the plates of a 4.0-cm-wide parallel plate capacitor. The surface charge distributions on the plates are given by σ = ±1.0* 10-6 C/m2. How far has the proton been deflected sideways (Δy) when it reaches the far edge of the capacitor? Assume that the electric field is uniform inside the capacitor and zero outside. (The plates of the capacitor are parallel to the x-axis. The charge of the proton is +1.602 * 10-19 C and the mass of the proton is 1.67 *10-27 kg.)

 

Physics, Academics

  • Category:- Physics
  • Reference No.:- M91392982
  • Price:- $12

Guranteed 24 Hours Delivery, In Price:- $12

Have any Question?


Related Questions in Physics

Question oppositely charged parallel plates are separated

Question: Oppositely charged parallel plates are separated by 5.31 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? N/C (b) What is the ma ...

Question an object of mass m attached to a spring of force

Question: An object of mass m attached to a spring of force constant k oscillates with simple harmonic motion. The maximum displacement from equilibrium is A and the total mechanical energy of the system is E. What is th ...

Quesion when a nucleus of 235u undergoes fission it breaks

Quesion: When a nucleus of 235U undergoes fission, it breaks into two smaller, more tightly bound fragments. Part A: Calculate the binding energy per nucleon for 235U. Express your answer with the appropriate units. E=__ ...

Question a nylon rope used by mountaineers elongates 130 m

Question: A nylon rope used by mountaineers elongates 1.30 m under the weight of a 65.0-kg climber. If the rope is 45.0 m in length and 7.0 mm in diameter, what is Young's modulus for this material? The response must be ...

Question an object is 30 cm in front of a converging lens

Question: An object is 30 cm in front of a converging lens with a focal length of 10 cm. Use ray tracing to determine the location of the image. What are the image characteristics: (i) upright or inverted, (ii) magnifica ...

Question an object of mass m is traveling on a horizontal

Question: An object of mass m is traveling on a horizontal surface. There is a coefficient of kinetic friction µ between the object and the surface. The object has speed v when it reaches x=0 and encounters a spring. Th ...

Question in one of the classic nuclear physics experiments

Question: In one of the classic nuclear physics experiments at the beginning of the 20th century, an alpha particle was accelerated towards a gold nucleus and its path was substantially deflected by the Coulomb interacti ...

Question an object of mass m is dropped from height h above

Question: An object of mass m is dropped from height h above a planet of mass M and radius R. Find an expression for the object's speed as it hits the ground. Express your answer in terms of the variables m,M,h,R and app ...

Question one type of bb gun uses a spring-driven plunger to

Question: One type of BB gun uses a spring-driven plunger to blow the BB from its barrel. (a) Calculate the force constant of its plunger's spring if you must compress it 0.130 m to drive the 0.0580-kg plunger to a top s ...

Question an object is placed 30 cm to the left of a

Question: An object is placed 30 cm to the left of a converging lens that has a focal length of 15cm. Describe what the resulting image look like (i.e. image distance, magnification, upright or inverted images, real or v ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As