Ask Question, Ask an Expert

+61-413 786 465

info@mywordsolution.com

Ask Other Engineering Expert

Your objective in this lab is to convince the assessor that you understand the basic concepts of how shock absorbers affect the ride and handling of a vehicle.  This will involve discussion of your understanding of the competing demands of ride quality and outright vehicle performance, and application of this knowledge to what you observe during this experiment.  Your report should be concise and informative.

Your report should be professional presented in a formal lab report layout, and include:

  • Cover Page
  • Abstract (summary of report findings)
  • Introduction
    • Objectives
    • Background theory, including:
      • How shock absorber works
      • How shock absorber dyno works
    • Methodology (doesn't need to be too involved, just basic info on what dyno and damper we used and what test data we collected, and the difference between PVP and CVP data)
  • Test results
  • Discussion
  • Conclusion

In your report, you should address the following (in no particular order):

  1. Discuss the need for different rates of damping at low and high speeds, and in compression and rebound
  2. Discuss the difference between "ride" and "handling", and identify whether they might correlate to low or high speed damping.
  3. Discuss how dampers contribute to vehicle control through the various stages of a typical cornering maneouevre
    1. Travelling down a straight
    2. Braking into a corner
    3. Turning into the corner
    4. Constant speed steady state mid corner
    5. Turning out of the corner
    6. Accelerating down the next straight
  4. Discuss the construction of a typical monotube shock absorber, and explain how different damping rates (compression and rebound, low and high speed) are achieved.  Don't forget to acknowledge any references you may use....
  5. Discuss the construction of a typical twin-tube damper, how it varies from a monotube damper, and what the relative advantages and disadvantages are of each design.   
  6. Discuss the importance of the high pressure gas chamber built into the damper tested in this experiment. With reference to your damper force vs. velocity plot, what effect does the chamber have on the performance of and damper and why?  Why do we need the gas chamber in the first place?
  7. Cavitation is a condition which must be avoided within a damper. Explain under what circumstances this may occur and how it can be avoided.
  8. Using your own knowledge, estimate and justify a typical range of shock speeds (in both Hz and mm/sec) in a typical Formula SAE vehicle that would represent
    1. Low speed damping
    2. High speed damping

To justify the above you may should consider the full range of suspension travel for a Formula SAE vehicle (25mm bump to 25mm droop = 50mm of travel total).  From this, estimate typical shaft speeds that the damper might see in body roll and over road bumps, etc.  Assume a wheel-to-damper motion ratio of 1:1 - i.e.1mm wheel travel = 1mm shock travel

  1. For the tested Penske twin-tube damper, plot resistance force against shaft speed for a reasonable range of speeds for this damper
    1. Speeds will be determined in the lab, in accordance with estimated shaft speeds encountered in a Formula SAE application
  2. On the plotted force vs velocity curves, identify any notable changes in damping coefficient that may represent a change from low speed to high speed damping regimes
  3. Calculate values for damping coefficients of this damper (low and high speed, rebound and compression).  Does the damper exhibit a noticeable "knee" in the damping curve, indicating transition from low to high speed damping?  Does the knee occur at a speed that agrees with your estimation of where low and high speed damping should be separated?
  4. Comment on whether these calculated damping values agree with the requirements you discussed in point 1 above.
  5. For the RMIT FSAE vehicle that these dampers were purchased for:
    1. Estimate the undamped sprung mass natural frequency of the front and rear suspension, (single DOF 1/8 car model)
    2. Using a reasonable value for the average damping of the tested shock absorber, calculate the critical damping ratio and damped sprung mass natural frequency of the front and rear suspension of this vehicle if fitted with this shock absorber

Other Engineering, Engineering

  • Category:- Other Engineering
  • Reference No.:- M9526388

Have any Question?


Related Questions in Other Engineering

Engineering analysis homework -for every problem provide

Engineering Analysis Homework - For every problem, provide The MATLAB script/function files that solve the problems. Problem 1: Write a script that solves the problem. For (c), show results of the evaluation of every ind ...

Conceptual design of forced-free-mixed convection

Conceptual Design of Forced-Free-Mixed Convection Experiment This assessment is to be completed individually. 1. Learning Outcomes: - Develop a basic ability to conceptually design an experimental apparatus - Use theory ...

Select a risk problem from the list below and prepare a

Select a risk problem from the list below and prepare a risk management plan in accordance with AS/NZS ISO 31000:2009. Please ensure that: - Establish the context clearly, in accordance with the Standard; - Define your s ...

Register design a cpu register is simply a row of

Register design A CPU register is simply a row of flip-flops (i.e. SR, JK, T, etc) put side by side in an array to make the size of register required. For example, an 8 bit register has 8 flip-flops side by side for stor ...

Homework - risk and decision management1 you are working

Homework - Risk and Decision Management 1) You are working program X. The total budget allocated to the program is $100 M and it is to be completed in 24 mo. range (R) and passenger capacity (C) are two key performance p ...

Q 1a discontinuity is found fully developed from the toe to

Q. 1 A discontinuity is found fully developed from the toe to the bench surface on a 15 m high slope, slope angle 65°. The discontinuity (frictional angle 32° and cohesion 20 kN/m2) is planar and its strike is parallel t ...

Operations engineering assignment -please select only one

Operations Engineering Assignment - Please select only one of the following case studies for your assignment: CASE A. Tesla Motors Tesla is an innovative manufacturer that designs, assemble and sells fully electric vehic ...

Assignment 11 what is the purpose of ore reserve and

ASSIGNMENT 1 1. What is the purpose of ore reserve and resource estimation? Why are resource and reserve estimates important to the mining industry? 2. What is meant by ore? What is meant by the term waste? How is the di ...

Question 1 define rock mechanics discuss the main

Question 1 . Define rock mechanics. Discuss the main objectives of the application of rock mechanics in mining. Question 2. Define stress. Draw a diagram and define the normal and shear stress by resolving the resultant ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As