Ask Question, Ask an Expert

+61-413 786 465

info@mywordsolution.com

Ask Other Engineering Expert

Variables and Quantifiers in First-Order Logic - Artificial intelligence:

Now suppose that we wanted to say that there is a meal at the Red Lion which costs only three pounds. If we said that cost_of(meal, red_lion) = three_pounds, then this states that a specific meal (a constant, which we've labelled meal) costs three pounds. In fact, this does not capture what we wanted to say. For starting, it implies that we know exactly which meal it is that costs three pounds, and moreover, the landlord at the Red Lion decide to give this the bizarre name of "meal".  And also, it doesn't express the fact that there may be more than 1 meal which costs three pounds.

Instead of using constants in our translation of the sentence "there is a meal at the Red Lion costing 3pounds", we should have applied variables. If we had replaced meal with something which reflects the fact that we are talking just a generic, rather than a specific meal, then things would have been clearer. When a predicate relates something that could vary (as like our meal), we call these variables and represent them using uppercase word or letter.

So, we should have begun with something like

meal(X)∧ cost_of(red_lion,X) = three_pounds,

which reflects the fact that we are talking regarding some meal at the Red Lion, rather than a specific one. However, this is not quiteenough specific.  We have to tell the reader of our translated sentence something more regarding our conviction concerning the variable X In this particular case, we have to tell the reader that we believe there exists such an X. There is a particular symbol in predicate logic which we utilize for this purpose, called the 'exists symbol'. This is written:   . If we put it around our pair of predicates,then we get a completly formed sentence in first-order logic:

∃X (meal(X) ∧cost_of(red_lion, X) = three_pounds)

This is read as "there is something called X, where X is a meal and X costs 3 pounds at the Red Lion".

But what now if we want to say that all meals at the Red Lion cost 3 pounds. In this type of case, we have to use another symbol, which we call the 'forall' symbol. This states that the predicates concerning the variable to which the symbol applies are right for every possible example of that variable. So, what would happen if we replaced exists symbol above by our new forall symbol? We would get this:

∀X (meal(X) ∧ cost_of(red_lion, X) = three_pounds)

Is this really what we wanted to say? Aren't we saying something regarding all meals in the universe? Well, we're actually saying something regarding every object in the Universe: everything is a meal which you can buy from the Red Lion. For 3 pounds! What we actually wanted to say should have been described more like this:

∀X (meal(X)-> cost_of(red_lion, X) = three_pounds)

This is read as:if X is a meal,for all objects X then it costs 3 pounds in the Red Lion. We are still not there, though. This implies that every meal can be brought at the Red Lion. May be we should throw in another predicate: serves(Meal, Pub) which states that Pub serves the Meal. We can now at last  write what we wanted to say:

∀X (meal(X) ∧ serves(red_lion, X)-> cost_of(red_lion, X) = three_pounds)

This may be read as: for_ all objects X, if X is a meal and X is served in the Red Lion, then X costs three pounds. The act of making ourselves clear regard a variable by introducing an exists or a for_ all sign is called quantifying the variable. The for_ all andexists sign are likewise called quantifiers in first-order logic.

Substituting a ground term for a variable is frequently called "grounding a variable", "performing an instantiation" and "applying a substitution" or an example of instantiation is: turning the sentence "All meals are 5 pounds" into "Spaghetti is 5 pounds" - we have grounded the value of the variable meal to the constant spaghetti to give us an instance of the sentence.

Other Engineering, Engineering

  • Category:- Other Engineering
  • Reference No.:- M9509966

Have any Question?


Related Questions in Other Engineering

Assignment 11 what is the purpose of ore reserve and

ASSIGNMENT 1 1. What is the purpose of ore reserve and resource estimation? Why are resource and reserve estimates important to the mining industry? 2. What is meant by ore? What is meant by the term waste? How is the di ...

This is your second design assignment this assignment

This is your second design assignment. This assignment requires you to design a complex state machine. You are designing a digital alarm clock. There are various designs you can attempt. More complex designs are worth mo ...

Assignment 11 what is the purpose of ore reserve and

ASSIGNMENT 1 1. What is the purpose of ore reserve and resource estimation? Why are resource and reserve estimates important to the mining industry? 2. What is meant by ore? What is meant by the term waste? How is the di ...

Register design a cpu register is simply a row of

Register design A CPU register is simply a row of flip-flops (i.e. SR, JK, T, etc) put side by side in an array to make the size of register required. For example, an 8 bit register has 8 flip-flops side by side for stor ...

Conceptual design of forced-free-mixed convection

Conceptual Design of Forced-Free-Mixed Convection Experiment This assessment is to be completed individually. 1. Learning Outcomes: - Develop a basic ability to conceptually design an experimental apparatus - Use theory ...

Introduction to engineering design assignment -

Introduction to Engineering Design Assignment - Drafting Question 1 - Field notes and traverse drawing may be an outdated form of keeping and presenting information on the position of features on a site. Modern electroni ...

Assignment -problem 1 - given is the lcc difference

Assignment - Problem 1 - Given is the LCC difference equation that represents some LTI system: y(n) - ¾y(n-1) - ¼y(n-2) = x(n) + x(n-1)   a) Find the impulse response of the system (solve the LCCDE). b) Draw a block diag ...

Projectflow processing of liquor in a mineral refining

Project Flow Processing of Liquor in a Mineral Refining Plant The aim of this project is to design a flow processing system of liquor (slurry) in a mineral (aluminum) refining plant. Aluminum is manufactured in two phase ...

Engineering materials term paper assignment -conduct a

ENGINEERING MATERIALS TERM PAPER ASSIGNMENT - Conduct a thorough literature search and write a 15-20 page technical review paper on the evolution of the engineering materials used in the manufacturing of any one of the f ...

Engineering analysis assignment -for every problem provide

Engineering Analysis Assignment - For every problem, provide The MATLAB script/function files that solve the problems. Problem 1: Plot the function f(t) = (x+5) 2 /(4+3x 2 ) for -3 ≤ x ≤ 5. using plot command. Use the ar ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As