Ask Engineering Mathematics Expert

Susan Wong's Personal Budget

After Susan Wong graduated from State University with a degree in Operations Research, she went to work for a computer systems development firm in the Washington, D.C., area. As a student at State, Susan paid her normal monthly living expenses for apartment rent, food, and entertainment out of a bank account set up by her parents. Each month they would deposit a specific amount of cash into Susan's account. Her parents also paid her gas, telephone, and bank credit card bills, which were sent directly to them. Susan never had to worry about things like health, car, homeowners', and life insurance; utilities; driver's and car licenses; magazine subscriptions; and so on. Thus, while she was used to spending within a specific monthly budget in college, she was unprepared for the irregular monthly liabilities she encountered once she got a job and was on her own.

In some months Susan's bills would be modest and she would spend accordingly, only to be confronted the next month with a large insurance premium, or a bill for property taxes on her condominium, or a large credit card bill, or a bill for a magazine subscription, and so on the next month. Such unexpected expenditures would result in months when she could not balance her checking account; she would have to pay her bills with her bank credit card and then payoff her accumulated debt in installments while incurring high interest charges. By the end of her first year out of school she had hoped to have some money saved to begin an investment program, but instead she found herself in debt.

Frustrated by her predicament, Susan decided to get her financial situation in order. First, she sold the condominium that her parents had helped her purchase and moved into a cheaper apartment. This gave her enough cash to clear her outstanding debts with $3,800 left over to start the new year with. Susan then decided to use some of the operations research she had learned in college to help her develop a budget. Specifically, she decided to develop a linear programming model to help her decide how much she should put aside each month in short-term investments to meet the demands of irregular monthly liabilities and save some money.

First, Susan went through all of her financial records for the year and computed her expected monthly liabilities for the coming year, as shown in the following table:

MONTH

BILLS ($)

MONTH

BILLS ($)

January

$2,750

July

$3,050

February

$2,860

August

$2,300

March

$2,335

September

$1,975

April

$2,120

October

$1,670

May

$1,205

November

$2,710

Jun

$1,600

December

$2,980

Susan's after-taxes-and-benefits salary is $29,400 per year, which she receives in 12 equal monthly paychecks that are deposited directly into her bank account.

Susan has decided that she will invest any money she doesn't use to meet her liabilities each month in either a one-month, three-month, or seven-month short-term investment vehicles, rather than just leaving the money in an interest-bearing checking account. The yield on one-month investments is 6% per year nominal; on three-month investments the yield is 8% per year nominal; and on a seven-month investment the yield is 12% per year nominal. As part of her investment strategy, any time one of the short-term investments comes due she uses the principal as part of her budget, but she transfers any interest earned to another long-term investment (which she doesn't consider in her budgeting process). For example, if she has $100 left over in January that she invests for three months, in April when the investment matures she uses the $100 she originally invested in her budget, but any interest on the $100 is invested elsewhere. (Thus, the interest is not compounded over the course of the year.)

Susan wants to develop a linear programming model that will maximize her investment return during the year so she can take that money and reinvest it at the end of the year in a longer-term investment program. However, she doesn't have to confine herself to short-term investments that will all mature by the end of the year; she can continue to put money toward the end of the year in investments that won't mature until the following year. Her budgeting process will continue to the next year, where she can take out any surplus left over after December and reinvest it in a long-term program if she wants to.

Develop a linear programming model that to help Susan determine her best investment options to maximum her return.  (Hint: You need to create variables that represent monthly investment options.  Your objective is to maximize return taking into account that money invested each month is left over after expenses have been paid.)

Engineering Mathematics, Engineering

  • Category:- Engineering Mathematics
  • Reference No.:- M91629603
  • Price:- $30

Priced at Now at $30, Verified Solution

Have any Question?


Related Questions in Engineering Mathematics

Q undirected vs directed connectivitya prove that in any

Q: Undirected vs. directed connectivity. (a) Prove that in any connected undirected graph G = (V, E) there is a vertex v ? V whose removal leaves G connected. (Hint: Consider the DFS search tree for G.) (b) Give an examp ...

All these questions should be answered in matlab 1 generate

All these questions should be answered in MATLAB !!! 1. Generate a set of 3 random patterns of dimension 12 where each value is +1 or -1.(3 random 12*12 matrix) 2. Create a 12-unit Hopfield network (a 12x12 matrix) from ...

I have these questions for a homework assignment and have

I have these questions for a homework assignment and have to show work. This works with MIPS coding language and is the class Introduction to Computer Architecture. 1. Find the 2's complement representation (in 32-bit he ...

Question 1 - many spas many componentsconsider 4 types of

Question 1 - Many spas, many components Consider 4 types of spa tub: Aqua-Spa (or FirstSpa, or P1), Hydro-Lux (or SecondSpa, or P2), ThirdSpa (or P3) and FourthSpa (or P4), with the production of products P1, ..., P4 in ...

Analytical methods for engineers assignment - calculusthis

ANALYTICAL METHODS FOR ENGINEERS ASSIGNMENT - CALCULUS This assignment assesses Outcome - Analyse and model engineering situations and solve problems using calculus. Questions - Q1. Differentiate the following functions ...

Clculus assignment -q1 find the total differential of w

CALCULUS ASSIGNMENT - Q1. Find the total differential of w = x 3 yz + xy + z + 3 at (x, y, z) = (1, 2, 3). Q2. Find the value of the double integral ∫∫ R (6x + 2y 2 )dA where R = {(x, y)| - 2 ≤ y ≤ 1, y 2 ≤ x ≤ 2 - y. Q3 ...

Numerical analysis assignment -q1 define the following

Numerical Analysis Assignment - Q1. Define the following terms: (i) Truncation error (ii) Round-off error Q2. Show that if f(x) = logx, then the condition number, c(x) = |1/logx|. Hence show that log x is ill-conditioned ...

Question what is the signed binary sum of 1011100 and

Question : What is the signed binary sum of 1011100 and 1110101 in decimal? Show all of your work. What is the hexadecimal sum of 9A88 and 4AF6 in hexadecimal and decimal? Show all of your work.

Question a signal starts at point x as it travels to point

Question : A signal starts at point X. As it travels to point Y, it loses 8 dB. At point Y, the signal is boosted by 10 bB. As the signal travels to point Z, it loses 7 dB. The dB strength of the signal at point Z is -5 ...

Show all your work not just the answerswhen you multiply 21

(SHOW ALL YOUR WORK, not just the answers) When you multiply: 21 x 68 you most likely do: 8x1 + 8x20 + 60x1 + 60x20 = 1, 428 So, there are 4 multiplications and then 3 additions. How long would it take a computer to do t ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As