Ask Question, Ask an Expert

+61-413 786 465

info@mywordsolution.com

Ask Engineering Mathematics Expert

Question: Taking Discounts Universal Technologies, Inc. has identified two qualified vendors with the capability to supply some of its electronic components. For the coming year, Universal has estimated its volume requirements for these components and obtained price-break schedules from each vendor. (These are summarized as "all-units" discounts in the table below.) Universal's engineers have also estimated each vendor's maximum capacity for producing these components, based on available information about equipment in use and labor policies in effect. Finally, because of its limited history with Vendor A, Universal has adopted a policy that permits no more than 60% of its total unit purchases on these components to come from Vendor A.

 

 

Vendor A

Vendor B

   Product

         Requirement

     Unit price

        Volume required

     Unit price

        Volume required

        1

500

$225

0-250

$224

0-300

 

 

$220

250-500

$214

300-500

        2

1000

$124

0-600

$120

0-1000

 

 

$115

600-1000

 

(no discount)

        3

2500

$60

0-1000

$54

0-1500

 

 

  $56*

1000-2000

$52

1500-2500

 

 

$51

2000-2500

 

 

Total capacity (units)

 

                 2500

 

                 2000

*For example, if 1400 units are purchased from Vendor A, they cost $56 each, for a total of $78,400.

1) What is the minimum-cost purchase plan for Universal?

2) Suppose that Vendor A provides a new price-discount schedule for component 3. This one is an "incremental" discount, as opposed to an "all-units" discount, as follows.

- Unit price = $60 on all units up to 1000

- Unit price = $56 on the next 1000 units

- Unit price = $51 on the next 500 units

- With the change in pricing at Vendor A, what is the minimum purchasing cost for Universal?

Engineering Mathematics, Engineering

  • Category:- Engineering Mathematics
  • Reference No.:- M92289715

Have any Question?


Related Questions in Engineering Mathematics

Q undirected vs directed connectivitya prove that in any

Q: Undirected vs. directed connectivity. (a) Prove that in any connected undirected graph G = (V, E) there is a vertex v ? V whose removal leaves G connected. (Hint: Consider the DFS search tree for G.) (b) Give an examp ...

Question a signal starts at point x as it travels to point

Question : A signal starts at point X. As it travels to point Y, it loses 8 dB. At point Y, the signal is boosted by 10 bB. As the signal travels to point Z, it loses 7 dB. The dB strength of the signal at point Z is -5 ...

Assignment - lp problemsthe data for all the problems in

Assignment - LP problems The data for all the problems in this HW are included in the LP_problems_xlsx spreadsheet. Problem 1 - Cash Planning A startup investment project needs money to cover its cash flow needs. At the ...

Numerical analysis assignment -q1 define the following

Numerical Analysis Assignment - Q1. Define the following terms: (i) Truncation error (ii) Round-off error Q2. Show that if f(x) = logx, then the condition number, c(x) = |1/logx|. Hence show that log x is ill-conditioned ...

Question 1 - many spas many componentsconsider 4 types of

Question 1 - Many spas, many components Consider 4 types of spa tub: Aqua-Spa (or FirstSpa, or P1), Hydro-Lux (or SecondSpa, or P2), ThirdSpa (or P3) and FourthSpa (or P4), with the production of products P1, ..., P4 in ...

Clculus assignment -q1 find the total differential of w

CALCULUS ASSIGNMENT - Q1. Find the total differential of w = x 3 yz + xy + z + 3 at (x, y, z) = (1, 2, 3). Q2. Find the value of the double integral ∫∫ R (6x + 2y 2 )dA where R = {(x, y)| - 2 ≤ y ≤ 1, y 2 ≤ x ≤ 2 - y. Q3 ...

Problem -consider a closed convex set x sub rd a function h

Problem - Consider a closed convex set X ⊂ R d , a function H : X x Ξ ι→ R d , and a deterministic nonnegative sequence {α n } such that n=0 ∑ ∞ α n = ∞ and n=0 ∑ ∞ (α n ) 2 = ∞. Consider an inner product (·, ·) on R d , ...

Problem 1given a sequence xn for 0lenle3 where x0 1 x1 1

Problem # 1: Given a sequence x(n) for 0≤n≤3, where x(0) = 1, x(1) = 1, x(2) = -1, and x(3) = 0, compute its DFT X(k). (Use DFT formula, don't use MATLAB function) Use inverse DFT and apply it on the Fourier components X ...

Analytical methods for engineers assignment - calculusthis

ANALYTICAL METHODS FOR ENGINEERS ASSIGNMENT - CALCULUS This assignment assesses Outcome - Analyse and model engineering situations and solve problems using calculus. Questions - Q1. Differentiate the following functions ...

Question a suppose that you are given an instance of the

Question : (a) Suppose that you are given an instance of the MST problem on a graph G, with edge weights that are all positive and distinct. Let T be the minimum spanning tree for G returned by Kruskal's algorithm. Now s ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As