Ask Computer Engineering Expert

Question 1

Consider the one-time pad encryption scheme to encrypt a 1-bit message m,
and assume m is chosen with uniform distribution from message space M={0,1}.
Let E1 be the event "message m is = 1" and let E2 be the event
"ciphertext c is = 0". What is the probability that both event E1 and
event E2 happen?

Answer

a.0
b.0.5
c.0.25
d.1


Question 2

Consider the one-time pad encryption scheme to encrypt a 1-bit message m,
and assume m is chosen with uniform distribution from message space M={0,1}.
For b=0,1, let E[b] be the event "message m is = b" and let F be the event
"ciphertext c is = 1". What is the probability that event F happens?


Answer

a.0
b.0.5
c.0.25
d.1

Question 3

Consider the one-time pad encryption scheme to encrypt a 1-bit message m.
For b=0,1, let E[b] be the event "message m is = b", assume
prob(E[0])=p and prob(E[1])=1-p, for some p in [0,1],
and let F be the event "ciphertext C is = 1".
What is the probability of event E[0] given that event F happens?
Use the Bayes theorem to find your answer.

Answer

a.1
b.0.5
c.1-p
d.p

Question 4

Assume a meaningful plaintext is encrypted using the shift cipher.
How many encryption attempts are sufficient for an exhaustive (or brute-force)
search attack to find the plaintext with probability at least 1/2?

Answer

a.1
b.2
c.13
d.26

Question 5

Assume a meaningful plaintext is encrypted using the mono-alphabetic substitution cipher. How many encryption attempts are sufficient for an exhaustive (or brute-force)
search attack to find the plaintext (with probability 1)?

Answer

a.1
b.2
c.26
d.26!

Question 6

Assume a meaningful plaintext is encrypted using the poly-alphabetic substitution
cipher (with t random numbers in [0,26], for a known t).
How many encryption attempts are sufficient for an exhaustive (or brute-force)
search attack to find the plaintext (with probability 1)?

Answer


a.1
b.t
c.26
d.26 to the t-th power


Question 7

Which of these statements summarizes an equivalent form of the perfect secrecy notion?

Answer

a.The probability of the ciphertext conditioned by one plaintext is the same as the probability of the ciphertext conditioned by another plaintext
b. Knowledge of the plaintext does not affect the probability of the ciphertext
c.The probability that an adversary, after returning two plaintexts, guesses from a ciphertext c which of these two plaintexts was encrypted as c is 1/2
d.All of the above


Question 8

Which of these are valid properties of the one time pad?

Answer

a. satisfies perfect secrecy
b. the length of the key is equal to the length of the message
c.encryption and decryption are very efficient
d.all of the above

Question 9

Let L1, L2 be languages and let X,Y be either P or NP.
Consider the statement: if L1 is polynomial-time reducible to L2,
and L2 is in X, then L1 is in Y. Which of the following holds:

Answer

a.When X=P and Y=P, then the statement is true
b.When X=P and Y=NP, then the statement is true
c.When X=NP and Y=NP, then the statement is true
d. all of the above

Question 10

In an encryption scheme, let Enc denote the encryption algorithm,
Dec denote the decryption algorithm, and A denote the adversary''s algorithm.
Furthermore, let e(n), d(n), denote the running times of algorithms
Enc, Dec, respectively, and let
a(n) denote the minimum running time that an attacker takes to break any such scheme,
where n is the security parameter.
When designing this scheme following the principles
of modern cryptography, which of these relationships would you use to choose
your algorithms?


Answer

a. e(n),d(n),a(n)=O(n^c) for some constant c
b. e(n)=O(n^c) and d(n),a(n)=Omega(2^{cn}) for some constant c
c. e(n),d(n)=O(n^c) and a(n)=Omega(2^{cn}) for some constant c
d. e(n),d(n),a(n)=Omega(2^{cn}) for some constant c

Question 11

For which X,Y in {o, O, Theta, Omega, omega}, do the relationships (log n)^2 = X(n^{1/2}) and n^2 = Y(2^n) hold?


Answer

a.X=o, Y=o
b.X=O, Y=Theta
c.X=o, Y=Theta
d.X=Theta, Y=O

Question 12

For which X,Y in {o, O, Theta, Omega, omega}, do the relationships t(n)+t''(n) = X(max(t(n),t''(n)))
and t(n)+t''(n) = Y(min(t(n),t''(n))) hold for all t,t'' such that t(n),t''(n)>0 ?

Answer

a.X=Theta, Y=Theta
b.X=Theta, Y=Omega
c.X=Omega, Y=Theta
d.X=omega, Y=Theta


Question 13

Informally, BPP is the class of languages that can be decided by a probabilistic algorithm in polynomial time with an error probability of at most 1=3 on any instance. More formally, a language L is in BPP if there exists a probabilistic algorithm A (i.e., an algorithm that is allowed to use a polynomial-length string of random bits) that runs in polynomial time and satisfies the following: if x is in L then A(x) returns 1 with probability at least 2/3; if x is not in L then A(x) returns 1 with probability at most 1/3. By performing independent repetitions of algorithm A and taking the majority output, one can amplify the (2/3; 1/3) gap to (1 - 2^k; 2^k), which is extremely close to (1,0). BPP seems to well capture the class of problems that can be efficiently computed
by a computer today. It is known that P is in BPP, and while it is conjectured that P = BPP, this is actually unknown. It is also unknown whether BPP is in NP. Consider the following statements:
1) if L1 is polynomial-time reducible to L2, and L2 is in P, then L1 is in BPP;
2) if L1 is polynomial-time reducible to L2, and L2 is in BPP, then L1 is in NP.
They are, respectively:

Answer

a.true, unknown
b.unknown, unknown
c.unknown, false
d.true, false



Question 14

Assume you want to construct a public-key cryptosystem using the principles of modern cryptography, and you are
allowed to choose a language L such that your cryptosystem can be proved secure assuming that deciding L is
hard; from which of the following complexity classes would you pick L?

Answer

a.P
b.BPP
c.NP minus P
d.NP minus BPP

Question 15

Consider the one time pad encryption scheme to encrypt a 1-bit message.
Replace the XOR operation with another operation X. For which X does the
resulting scheme satisfy perfect secrecy? (Recall: OR(a,b)=1 if and only if
at least one of a,b=1; AND(a,b)=1 if and only if both a,b=1;
NOT(a)=1 if and only if a=0.)

Answer

a.X = AND
b.X = OR
c.X = NOT(XOR)
d.none of the above

Computer Engineering, Engineering

  • Category:- Computer Engineering
  • Reference No.:- M9503275

Have any Question?


Related Questions in Computer Engineering

Does bmw have a guided missile corporate culture and

Does BMW have a guided missile corporate culture, and incubator corporate culture, a family corporate culture, or an Eiffel tower corporate culture?

Rebecca borrows 10000 at 18 compounded annually she pays

Rebecca borrows $10,000 at 18% compounded annually. She pays off the loan over a 5-year period with annual payments, starting at year 1. Each successive payment is $700 greater than the previous payment. (a) How much was ...

Jeff decides to start saving some money from this upcoming

Jeff decides to start saving some money from this upcoming month onwards. He decides to save only $500 at first, but each month he will increase the amount invested by $100. He will do it for 60 months (including the fir ...

Suppose you make 30 annual investments in a fund that pays

Suppose you make 30 annual investments in a fund that pays 6% compounded annually. If your first deposit is $7,500 and each successive deposit is 6% greater than the preceding deposit, how much will be in the fund immedi ...

Question -under what circumstances is it ethical if ever to

Question :- Under what circumstances is it ethical, if ever, to use consumer information in marketing research? Explain why you consider it ethical or unethical.

What are the differences between four types of economics

What are the differences between four types of economics evaluations and their differences with other two (budget impact analysis (BIA) and cost of illness (COI) studies)?

What type of economic system does norway have explain some

What type of economic system does Norway have? Explain some of the benefits of this system to the country and some of the drawbacks,

Among the who imf and wto which of these governmental

Among the WHO, IMF, and WTO, which of these governmental institutions do you feel has most profoundly shaped healthcare outcomes in low-income countries and why? Please support your reasons with examples and research/doc ...

A real estate developer will build two different types of

A real estate developer will build two different types of apartments in a residential area: one- bedroom apartments and two-bedroom apartments. In addition, the developer will build either a swimming pool or a tennis cou ...

Question what some of the reasons that evolutionary models

Question : What some of the reasons that evolutionary models are considered by many to be the best approach to software development. The response must be typed, single spaced, must be in times new roman font (size 12) an ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As