Ask Other Engineering Expert

Q. What is slip? What is slip plane? What are principal if slip planes and slip direction for BCC, FCC and HCP crystal?

Ans. X-ray diffraction studies show that the crystalline order in the solid is not lost during plastic deformation, even though more imperfection is introduced. The atom movements are such that the crystal structure remains the same before and after plastic deformation.

      There are two basic modes of plastic deformation are called slip and twinning. Slip is a shear deformation that moves atom by many interatomic distances relative to their initial position. Steps are created at the surface of the crystals during slip, but the orientation of the all parts of the crystal remains the same before and after the slip. Twinning, on the other hand, change the orientation of the twinned parts. The movement of an atom relative to its neighbors is only a fraction of an interatomic distance. The slip mode of the deformation of the common mode in many crystals in ambient and elevated temperatures. At low temperature, the mode of deformation changes over to twinning in a number of cases. We shall consider deformation by slip only.

       Careful examination of the surface of a deformed crystal under the microscope shows group of parallel lines, which corresponds the steps on the surface. They are called slip lines. This indicates that the atomic planes within the crystal have sheared with respect to one another resulting in the surface steps. It is generally found that the slip planes are the closed packed direction. It turns out that the planes of the greatest atomic density, having the highest numbers of atoms per unit area, are the most widely spaced planes. The directions of the greatest atomic linear density have the smallest translation distance from one minimum energy position to the next. In ionic crystals, the slip planes and the slip directions are such that the ions of the same polarity do not become just opposed as nearest neighbors during shear, as this would mean a big increase in the potential energy of the crystal. The common slip planes and slip directions for the some simple crystals are given in table:

 

Crystal

 

Slip Planes

Slip Direction

FCC

 

{111}

< 110 >

BCC

More common

Less common

{110}

{112}, {123}

< 111 >

NaCl

 

{110}

< 110 >

HCP

More common

Less common

Base plane

Prismatic and

Pyramidal planes

Closed packed directions

 

A s;ip plane and a slip direction that lies on it together constitute a slip system. For example, the combination {111 and {111} forms a slip system, but not {111} and {110}, as the {110} direction does not lie on the {111} plane, counting the slip system for the most densely packed slip planes only, there are 12 slip systems in FCC and BCC crystals, whole there are only3 in HCP crystals the NaCl crystal has 6 slip systems.

      In a polycrystalline material, slip in any crystal has to be accommodated by slip in neighboring crystals, if the grain boundaries are to remain continuous during slip. According to the von Misses criterion, a minimum of five independent slip is necessary to maintain the integrity of the grain boundaries during plastic deformation. In FCC a b, d BCC crystals, this condition is fulfilled. In HCP crystals, for slip on the basal closed packed plane, there are only two independent slip systems. These correspond to any two of the three closed packed directions. A slip displacement in the third direction can be expressed as the resultant of the slip along the other two directions and is therefore is not independent. In polycrystalline form, HCP materials can deform only by slip onb less common slip systems or alternatively by twinning.

    The stress at which slip starts in a crystal depends on the relative orientation of the stress axis with respect to the slip plane and the slip direction. When a tensile sress σ is applied to a crystal the shear stress τ resolve on a slip plane whose normal makes an angle of ?1 with the stress axis, along a slip direction inclined at an angle ?2 to the stress axis, is given by

                                      .τ =σ cos?1 cos?2

This resolved shear stress should reach a critical value called the critical resolved shear stress for plastic deformation to start. It is evident that all slip system in crystal will not have the same resolved shear stress for a given tensile stress along an axis. As the applied tensile stress is increased from zero, deformation will be initiated first on that slip system for which the resolved shear stress is a maximum and so reaches the critical value first.

Other Engineering, Engineering

  • Category:- Other Engineering
  • Reference No.:- M9505733

Have any Question?


Related Questions in Other Engineering

Register design a cpu register is simply a row of

Register design A CPU register is simply a row of flip-flops (i.e. SR, JK, T, etc) put side by side in an array to make the size of register required. For example, an 8 bit register has 8 flip-flops side by side for stor ...

A detailed review of spatial modulation and simulation

A Detailed Review of Spatial Modulation and Simulation Learning Outcomes a. Learn how to model mobile communication channels d. Discern knowledge development and directions on the recent advances in 4G to the research pr ...

Mine safety amp environmental engineering assignment -part

Mine Safety & Environmental Engineering Assignment - Part 1 - Questions 1. Occupational health and safety is the primary factor that needs to be considered in the mining industry. Discuss this statement. 2. Define the fo ...

Projectflow processing of liquor in a mineral refining

Project Flow Processing of Liquor in a Mineral Refining Plant The aim of this project is to design a flow processing system of liquor (slurry) in a mineral (aluminum) refining plant. Aluminum is manufactured in two phase ...

Learning outcomes evaluate multiuser communication and

Learning Outcomes Evaluate multiuser communication and resource sharing techniques; Apply the techniques of, and report on, digital communication applications using Matlab and hardware devices. Assignment Description The ...

Operations engineering assignment -please select only one

Operations Engineering Assignment - Please select only one of the following case studies for your assignment: CASE A. Tesla Motors Tesla is an innovative manufacturer that designs, assemble and sells fully electric vehic ...

Select a risk problem from the list below and prepare a

Select a risk problem from the list below and prepare a risk management plan in accordance with AS/NZS ISO 31000:2009. Please ensure that: - Establish the context clearly, in accordance with the Standard; - Define your s ...

Engineering materials term paper assignment -conduct a

ENGINEERING MATERIALS TERM PAPER ASSIGNMENT - Conduct a thorough literature search and write a 15-20 page technical review paper on the evolution of the engineering materials used in the manufacturing of any one of the f ...

Task 1using the lab kit design a circuit for the processor

Task 1: Using the lab kit, design a circuit for the processor to control the output of a connected 7-segment LED display device. You will be provided with a standard common anode 7-segment display of the type FND-507 (or ...

Control theory - lab reportsfor experiments 1 to 4 you must

Control Theory - Lab Reports For experiments 1 to 4 you must undertake the following: a) At the start of each section (including the pre-lab activities) there are a number learning outcomes. That is, what students should ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As