+1-415-315-9853

info@mywordsolution.com

## Engineering

 Civil Engineering Chemical Engineering Electrical & Electronics Mechanical Engineering Computer Engineering Engineering Mathematics MATLAB Other Engineering Digital Electronics Biochemical & Biotechnology

problem 1: Determination of Catalyst Particle Size.

Our packed bed reactor conducts the gas phase reaction A → R at P = 10 atm and T = 336oC and gives 90% conversion using a feed that consists of pure A.  However, our favorite catalyst sales person guarantees that in the absence of pore diffusional resistance, this same reaction will proceed on his new and improved porous catalyst (Deff = 2 x 10-6 m3/m cat-s) with a rate equation given by:

This rate is much better than what we can do now with our current catalyst. However, the new catalyst is rather expensive since it is formulated of compressed kookaburra droppings and it is sold by weight versus catalyst volume. Given the above information, what diameter of catalyst spheres should we order from our catalyst sales person?

problem 2: Catalyst Effectiveness Factor for a Long Cylindrical Catalyst.

Consider diffusion and first-order reaction A → P occurring in a long cylindrically-shaped porous catalyst with a radius of r = R under isothermal conditions in the presence of an inert gas. The concentrations of reactant A and product P are low enough that the local
flux can be described in terms of Fick’s law so that NA = -De dNA/dr.

a) Assuming that CA = CA(r) and that –rA = k CA (mol/m3cat-s), set up a shell balance with all units (use SI units) and show that the governing mass balance equation is:

What other assumption or assumptions was (were) made to arrive at this equation?

b) prepare the boundary conditions at the pellet center r = 0 and the pellet surface r = R for the case where the surface of the catalyst is exposed to a gas whose concentration is CA = CAS in the absence of any external gas film mass transfer resistance.

c) Transform the above mass balance equation in dimensionless form by introducing the following dimensionless variables for the concentration and radial coordinate, respectively,

u = CA/CAS  and  ρ = r/R

Show that when these groups are introduced, that the dimensionless group Φ2 = R2 k/De emerges from this analysis. Show the units of each term in this parameter and that it is indeed dimensionless.

d) Solve the above equation and associated boundary conditions to obtain an expression for the dimensionless concentration profile for specie A. (Note: This solution will be expressed in terms of the modified Bessel function of the first kind).

e) Using the solution for the dimensionless concentration profile for specie A derived in step d above, obtain the expression for the catalyst effectiveness factor by both of the methods discussed in class,  i.e., integration of the concentration profile and differentiation of the derivative. Show that the effectiveness factor is η= I1(2Φ)/[ΦoI0(2Φ)] where I0(x) and I1(x) are modified Bessel functions of the first kind of order 0 and 1, respectively.

f) Prepare a table that lists the expressions for the dimensionless concentration profiles and catalyst effectiveness factors for slab, cylinder and spherical catalysts.

(g) prepare an Excel program  that computes the dimensionless concentrations as a function of the dimensionless coordinates for slab, cylindrical and spherical pellets using Φ = 0.5, 1, 2, 5 and 10 and draw three separate graphs. Use at least 50 values of the dimensionless coordinate so you get smooth curves.

h) Using your expressions for the catalyst effectiveness factor, create a chart of catalyst effectiveness factor versus the Thiele modulus.

problem 3: Effectiveness Factor in Slurry Hydrogenation

The liquid phase hydrogenation of hydrocarbons, such as olefins to paraffins, is accomplished by bubbling hydrogen gas (specie A) through a  liquid phase containing suspended porous catalyst particles. The gas dissolves in the liquid, diffuses into the catalyst pores, and reacts there at an active site. The reaction is first-order with respect to the limiting reactant (hydrogen) and has a diffusion-free rate constant of k = 0.1 m3/m3 catalyst-s. The goal is to achieve a reaction rate in the reactor so that

From vapor-liquid equilibrium data, the Henry’s law constant for the solubility of hydrogen gas in this hydrocarbon is estimated to be

HA = PA/CA = 0.1m3 liquid-atm/mol H2

where pA is the partial pressure of hydrogen gas and CA is the concentration of dissolved hydrogen gas in the liquid. The effective diffusivity of dissolved hydrogen gas in the liquid-filled pores of the catalyst is estimated to be:

De = 2 x 10-9  m3/m catalyst-s

a) If we wish to insure that pore diffusion effects do not result in inefficient use of the catalyst, and if operation is  to be performed at atmospheric pressure, what size of suspended catalyst particles should be used?

b) What hydrogen pressure must be used if we want to get the required rate of reaction using 3 mm catalyst pellets in a packed bed reactor?

Chemical Engineering, Engineering

• Category:- Chemical Engineering
• Reference No.:- M92011

Have any Question?

## Related Questions in Chemical Engineering

### A draw an arbitrary closed contour on figure 711 and show

(a) Draw an arbitrary closed contour on Figure 7.11 and show that it yields zero net flow of current. (b) Suppose a capacitor is inserted into the circuit instead of any of the resistors and the current is switched on. D ...

### An experiment involves heating a very small sphere that is

An experiment involves heating a very small sphere that is suspended by a fine string in air with a laser beam in order to induce the highest sphere temperature possible. After inspecting Equation 9.64, a research assist ...

### Because of shortage of copper it was decided to make the

Because of shortage of copper, it was decided to make the fuse in Example 7.4 out of iron (not a very good idea because of corrosion). If the same dimensions, including the width calculated in Example 7.4a are used and t ...

### For the inertial system governed by the differential

For the inertial system governed by the differential equation design a feedback controller to stabilize the system and reduce the percentage overshoot below 10% with a settling time of less than 4 s.

### A wing generates a lift l when moving through sea-level air

A wing generates a lift L when moving through sea-level air with a velocity U. How fast must the wing move through the air at an altitude of 35,000 ft if it is to generate the same lift? (Assume the lift coefficient is c ...

### A potential flow source having an intensity of 10m2s placed

A potential flow source having an intensity of 10m2/s, placed in the point of Cartesian coordinates (1;0), and a sink having identical intensity, placed in the point (-1;0), are combined with a uniform flow at 25 m/s, in ...

### A 2-m3 tank initially contains a mixture of saturated-vapor

A 2-m3 tank initially contains a mixture of saturated-vapor steam and saturated-liquid water at 3000 kPa. Of the total mass, 10% is vapor. Saturated-liquid water is bled from the tank through a valve until the total mass ...

### Current and charge in a battery consider a car battery

Current and charge in a battery. Consider a car battery rated at 100 A· h. This battery can supply a current of 100 A for an hour. (a) How much charge can the battery supply? (b) What must be the area of a parallel plate ...

### A solar collector design consists of an inner tube enclosed

A solar collector design consists of an inner tube enclosed concentrically in an outer tube that is transparent to solar radiation. The tubes are thin walled with inner and outer diameters of 0.10 and 0.15 m, respectivel ...

### Question 1 a give three examples for each of natural free

Question 1. (a) Give three examples for each of natural (free) convection and forced convection which occur in industrial processes. (b) The Grashof number and the Reynolds number appear in most correlations of experimen ...

• 13,132 Experts

## Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

### WalMart Identification of theory and critical discussion

Drawing on the prescribed text and/or relevant academic literature, produce a paper which discusses the nature of group

### Section onea in an atwood machine suppose two objects of

SECTION ONE (a) In an Atwood Machine, suppose two objects of unequal mass are hung vertically over a frictionless

### Part 1you work in hr for a company that operates a factory

Part 1: You work in HR for a company that operates a factory manufacturing fiberglass. There are several hundred empl

### Details on advanced accounting paperthis paper is intended

DETAILS ON ADVANCED ACCOUNTING PAPER This paper is intended for students to apply the theoretical knowledge around ac

### Create a provider database and related reports and queries

Create a provider database and related reports and queries to capture contact information for potential PC component pro