Ask Engineering Mathematics Expert

HONORS EXAM 2012 REAL ANALYSIS

1. Prove or disprove: If {pn}n=1 is a sequence of polynomials and ∑pn → f uniformly on R as n → ∞, then f is a polynomial.

2. Let C = {f: [0, 1] → [0, 1] | f is continuous}, the set of continuous maps from the interval [0, 1] to itself. Define a metric d on C by d(f, g) = maxx[0,1]|f(x) - g(x)|. Let Ci and Cs be the sets of injective and surjective elements, respectively, of C. Prove or disprove the following:

(a) Ci is closed in C.

(b) Cs is closed in C.

(c) C is connected.

(d) C is compact.

3. Define a sequence of functions f1, f2, . . . :[0, ∞) → R by fn(x) = sin(x/n)/x +(1/n). Discuss the convergence of {fn} and {f'n} as n → ∞.

4. Recall the Intermediate Value Theorem:

Let f: [a, b] → R be a continuous function, and y any number between f(a) and f(b) inclusive. Then there exists a point c ∈ [a, b] with f(c) = y.

(a) Prove the Intermediate Value Theorem.

(b) Prove or disprove the following converse to the Intermediate Value Theorem:

If for any two points a < b and any number y between f(a) and f(b) inclusive, there is a point c ∈ [a, b] such that f(c) = y, then f is continuous.

(c) Prove or disprove the following fixed-point theorem:

Let g: [0, 1] → [0, 1] be continuous. Then there exists a fixed point x ∈ [0, 1] (that is, a point x such that g(x) = x).

5. This question deals with the Riemann integral.

(a) Let S be the unit square [0, 1] × [0, 1]. Define f: S → R by setting

755_Figure.png

For each of the following integrals, compute its value or show that it does not exist:

01(01f(x, y) dx)dy, 01(01f(x, y) dy)dx, ∫Sf(x, y).

(b) What conditions on f would guarantee that all three integrals exist and are equal?

(c) Give an example of a function g and a domain D such that ∫D|g| exists but ∫Dg does not.

6. Let f: R2 → R2 be smooth (C) and suppose that

∂f1/∂x = ∂f2/∂y, ∂f1/∂y = - (∂f2/∂x).

(These are the Cauchy-Riemann equations, which arise naturally in complex analysis.)

(a) Show that Df(x, y) = 0 if and only if Df(x, y) is singular, and hence f has a local inverse if Df(x, y) ≠ 0. Show that the inverse function also satisfies the Cauchy-Riemann equations.

(b) Give an example showing that the statement in part (a) (f has a local inverse if Df(x, y) ≠ 0) may be false if f does not satisfy the Cauchy-Riemann equations.

7. Let M be a compact 2-manifold in R2, oriented naturally; give the boundary ∂M the induced orientation. Let f: R2 → R be a smooth (C) function such that f(x) = 0 for any x ∈ ∂M.

(a) Prove that

Mf · (∂2f/∂x2 + ∂2f/∂y2) dx ∧ dy = -∫M((∂f/∂x)2 + (∂f/∂y )2) dx ∧ dy.

(b) Deduce from (a) that if, in addition, f is harmonic on M (that is, ∂2f/∂x2 + ∂2f/∂y2 = 0 on M), then f(x) = 0 for any x ∈ M.

8. (a) (i) Let f be the polar coordinate map given by (x, y) = f(r, θ) = (r cos θ, r sin θ). Compute f(dx), f(dy), and f(dx ∧ dy).

(ii) Compute ∫C xy dx, where C = {(x, y)| x2 + y2 = 1, x ≥ 0, y ≥ 0}, the portion of the unit circle in the first quadrant, oriented counter-clockwise.

(b) Let M be a manifold, possibly with boundary. A retraction of M onto a subset A is a smooth (C) map φ: M → A such that φ(x) = x for all x ∈ A. (For example, the map φ(x) = x/||x|| is a retraction of the punctured plane R2\{(0, 0)} onto the unit circle S1.) Prove the following theorem:

There does not exist a retraction from the plane R2 onto the unit circle S1.

(Hint: Consider the 1-form x dy - y dx/x2 + y2, which is defined in an open set containing S1.)

9. (a) Let ω1 and ω2 be differential forms defined on the same domain.

(i) If ω1 and ω2 are closed, must ω1 ∧ ω2 also be closed? If ω1 ∧ ω2 is closed, must ω1 and ω2 also be closed?

(ii) If ω1 and ω2 are exact, must ω1 ∧ ω2 also be exact? If ω1 ∧ ω2 is exact, must ω1 and ω2 also be exact?

(b) Show that every closed 1-form on the punctured space R3\{(0, 0, 0)} is exact.

Engineering Mathematics, Engineering

  • Category:- Engineering Mathematics
  • Reference No.:- M91859031

Have any Question?


Related Questions in Engineering Mathematics

Q undirected vs directed connectivitya prove that in any

Q: Undirected vs. directed connectivity. (a) Prove that in any connected undirected graph G = (V, E) there is a vertex v ? V whose removal leaves G connected. (Hint: Consider the DFS search tree for G.) (b) Give an examp ...

All these questions should be answered in matlab 1 generate

All these questions should be answered in MATLAB !!! 1. Generate a set of 3 random patterns of dimension 12 where each value is +1 or -1.(3 random 12*12 matrix) 2. Create a 12-unit Hopfield network (a 12x12 matrix) from ...

I have these questions for a homework assignment and have

I have these questions for a homework assignment and have to show work. This works with MIPS coding language and is the class Introduction to Computer Architecture. 1. Find the 2's complement representation (in 32-bit he ...

Question 1 - many spas many componentsconsider 4 types of

Question 1 - Many spas, many components Consider 4 types of spa tub: Aqua-Spa (or FirstSpa, or P1), Hydro-Lux (or SecondSpa, or P2), ThirdSpa (or P3) and FourthSpa (or P4), with the production of products P1, ..., P4 in ...

Analytical methods for engineers assignment - calculusthis

ANALYTICAL METHODS FOR ENGINEERS ASSIGNMENT - CALCULUS This assignment assesses Outcome - Analyse and model engineering situations and solve problems using calculus. Questions - Q1. Differentiate the following functions ...

Clculus assignment -q1 find the total differential of w

CALCULUS ASSIGNMENT - Q1. Find the total differential of w = x 3 yz + xy + z + 3 at (x, y, z) = (1, 2, 3). Q2. Find the value of the double integral ∫∫ R (6x + 2y 2 )dA where R = {(x, y)| - 2 ≤ y ≤ 1, y 2 ≤ x ≤ 2 - y. Q3 ...

Numerical analysis assignment -q1 define the following

Numerical Analysis Assignment - Q1. Define the following terms: (i) Truncation error (ii) Round-off error Q2. Show that if f(x) = logx, then the condition number, c(x) = |1/logx|. Hence show that log x is ill-conditioned ...

Question what is the signed binary sum of 1011100 and

Question : What is the signed binary sum of 1011100 and 1110101 in decimal? Show all of your work. What is the hexadecimal sum of 9A88 and 4AF6 in hexadecimal and decimal? Show all of your work.

Question a signal starts at point x as it travels to point

Question : A signal starts at point X. As it travels to point Y, it loses 8 dB. At point Y, the signal is boosted by 10 bB. As the signal travels to point Z, it loses 7 dB. The dB strength of the signal at point Z is -5 ...

Show all your work not just the answerswhen you multiply 21

(SHOW ALL YOUR WORK, not just the answers) When you multiply: 21 x 68 you most likely do: 8x1 + 8x20 + 60x1 + 60x20 = 1, 428 So, there are 4 multiplications and then 3 additions. How long would it take a computer to do t ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As