Ask Question, Ask an Expert

+61-413 786 465

info@mywordsolution.com

Ask Other Engineering Expert

Engineering Analysis and Modelling

Numerical integration and differentiation.

Power demand on an automotive engine.

Notes on numerical integration and differentiation can be found by following the links at:

http://staff.vu.edu.au/msek

http://staff.vu.edu.au/msek/Numerical%20integration/numIntegrationPublished.html

http://staff.vu.edu.au/msek/Numerical%20differentiation/numDiffPublished.html

You work for a Formula 1 team. You happen to obtain a record of velocity versus elapsed time during a lap test for the car of your competitor. No other information is available due to commercial-in-confidence restrictions.

The knowledge about the power of the competitor's car engine would allow your team to fine-tune the power characteristics of your car engine to exceed that of the competitor's.

You are given a task of estimating the power characteristics of their engine.

On the website, under the heading Sample data files: Car speed vs time data, there is a two-column text file, containing a record of speed of an accelerating vehicle (in km/h), starting from a stationary position. Values in the first column are the elapsed time from the start (in seconds) and the corresponding values of velocity (km/h) are in the second column. To save the file right-click on the link and select 'Save target as'.

1. Make appropriate analysis of how to determine the power that the vehicle power drive must supply at each point of time to produce that velocity profile. First, neglect aerodynamic drag, rolling resistance and other friction losses If you need to assume some values, do so.

2. At each point of time determine the distance from the start that the vehicle has travelled. This requires numerical integration, such as trapezoidal integration.

3. Determine the acceleration the vehicle is subjected to at each point of time. This requires numerical differentiation. Finite difference formulae can be found at:

http://www.staff.vu.edu.au/msek/Finite%20difference%20formulae.pdf

4. Calculate the power demand at each point of time.

5. Now consider the rolling resistance and aerodynamic drag with a rolling friction coefficient and aerodynamic drag coefficient typical to vehicles. What is the drive power at each point of time now?

6. Make assumptions and select values from a realistic range as required.

http://en.wikipedia.org/wiki/Rolling_resistance

http://en.wikipedia.org/wiki/Drag_coefficient

Attachment:- Assignment.rar

Other Engineering, Engineering

  • Category:- Other Engineering
  • Reference No.:- M92243697

Have any Question?


Related Questions in Other Engineering

Homework - risk and decision management1 you are working

Homework - Risk and Decision Management 1) You are working program X. The total budget allocated to the program is $100 M and it is to be completed in 24 mo. range (R) and passenger capacity (C) are two key performance p ...

Projection of planes1 a regular pentagon of 25 mm side has

Projection of Planes 1. A regular pentagon of 25 mm side has one side on the ground. Its plane is inclined at 45° to H.P. and perpendicular to the V.P. Draw its projections. 2. Draw the projection of a circle of 50 mm di ...

Conceptual design of forced-free-mixed convection

Conceptual Design of Forced-Free-Mixed Convection Experiment This assessment is to be completed individually. 1. Learning Outcomes: - Develop a basic ability to conceptually design an experimental apparatus - Use theory ...

Task 1using the lab kit design a circuit for the processor

Task 1: Using the lab kit, design a circuit for the processor to control the output of a connected 7-segment LED display device. You will be provided with a standard common anode 7-segment display of the type FND-507 (or ...

Q 1a discontinuity is found fully developed from the toe to

Q. 1 A discontinuity is found fully developed from the toe to the bench surface on a 15 m high slope, slope angle 65°. The discontinuity (frictional angle 32° and cohesion 20 kN/m2) is planar and its strike is parallel t ...

Select a risk problem from the list below and prepare a

Select a risk problem from the list below and prepare a risk management plan in accordance with AS/NZS ISO 31000:2009. Please ensure that: - Establish the context clearly, in accordance with the Standard; - Define your s ...

Part 1configure verify and troubleshoot wan links and ip

Part 1 Configure, verify and troubleshoot WAN links and IP services Answer to all questions below: 1. What is the name of the Safe Work Australia code of practise that provides guidance on how to manage the risks of elec ...

Assignment -problem 1 - given is the lcc difference

Assignment - Problem 1 - Given is the LCC difference equation that represents some LTI system: y(n) - ¾y(n-1) - ¼y(n-2) = x(n) + x(n-1)   a) Find the impulse response of the system (solve the LCCDE). b) Draw a block diag ...

Assessment practical reportproduce a short technical report

Assessment: Practical Report Produce a short technical report in a form consistent with proteomic journals covering the techniques, results and interpretation of your proteomics experiment in the practical classes. The r ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As