Ask Other Engineering Expert

Assignment - Gradually Varied Flow Profiles and Numerical Solution of the Kinematic Equations

Objectives

1. Evaluate and apply the equations available for the description of open channel flow

2. Solve the equations governing unsteady open channel flow

3. Apply the equations of unsteady flow to practical flow problems

Question 1 - Gradually Varied Flow Profiles  

Water is flowing in a long prismatic channel of triangular cross section with side slopes of 19 degrees to the horizontal. The Manning n of plastic lined channel is 0.013.

The channel is conveying a steady flow rate of 6 + (2 x n1) m3/s

The bed slope of the channel is 0.003 + (0.0001 x n2)

Where, n1 is the second last digit and n2 is the last digit in your student number.

For example if your student number is 10005007648 then

Q = 6 + (2 x 4) = 14 m3/s

S0 = 0.003 + (0.0001 x 8) = 0.0038

Upstream of this channel is a channel of the same cross section but of much lower slope. The sudden change in slope means that the depth at the upstream end of the channel of interest can be approximated as critical depth. Take alpha as being 1.1 (α = 1.1).

Your task:

a) Use the direct step method and the equation below to compute the water surface profile downstream of the change in slope. The water level will gradually end up at normal depth.

Δy/Δx = (S0 - S-f)/(1 - F-2R)  where FR = (√αV/√(gy-))

b) Plot the water depth against distance.

c) Plot the longitudinal bed, normal depth, critical depth, water surface and energy line over the length of this profile.

d) Include sample hand calculation in the report

Hints:

- The size of the step is up to you.

- Use of computers for this task (Matlab, Excel etc is encouraged)

- When computing the water surface profile you should stop just short of normal depth

- The Froude number and critical depth for a triangular channel are different to that of a rectangular channel (e.g. need average depth ( y- ) instead of max depth ( y ) in FR)

Question 2 - Kinematic Wave Model

Background

You have been asked to investigate the flow behaviour of a large sporting field subjected to a short duration high intensity storm rainfall event.

As part of the process you will develop a computer simulation of the water depths and flow rates for a specified rainfall pattern. The kinematic wave approximation is a simple form of one dimensional flow model, which is deemed sufficient for this task.

Your Task -

1) Complete the tutorial problems 5.1, 5.2, 5.3 and 5.4 in Module 5. You will find full solutions of first three questions in the study book that will help you to solve 5.4.

2) OPTIONAL: If you are not confident about your answer to 5.4 you may submit your working (formulas/equations) to the examiner using the link provided on studydesk before proceeding with the numerical scheme. Your examiner will be able to guide you through.

3) Build your model (using any programming language or spreadsheet) for solving the kinematic wave equations for computing depth and flow rate resulting from the storm events. You must configure your model according to the specifications above.

4) Validate your mathematical model by modelling the runoff under steady rainfall (constant rainfall depth) and compare results with the theoretical results for steady rainfall. The analytical procedure for theoretical results has been discussed at the end of this problem (The section Model Validation)

You are required to check all three conditions

5) Modify the model to accommodate the design storm hyetograph. Then use this program to calculate water depth and flow rate at uniform distance interval dx along the unit width channel for the given storm event.

6) Write up all equations, model development, validation, results and discussion in a report format.

Attachment:- Assignment Files.rar

Other Engineering, Engineering

  • Category:- Other Engineering
  • Reference No.:- M92270854

Have any Question?


Related Questions in Other Engineering

Register design a cpu register is simply a row of

Register design A CPU register is simply a row of flip-flops (i.e. SR, JK, T, etc) put side by side in an array to make the size of register required. For example, an 8 bit register has 8 flip-flops side by side for stor ...

A detailed review of spatial modulation and simulation

A Detailed Review of Spatial Modulation and Simulation Learning Outcomes a. Learn how to model mobile communication channels d. Discern knowledge development and directions on the recent advances in 4G to the research pr ...

Mine safety amp environmental engineering assignment -part

Mine Safety & Environmental Engineering Assignment - Part 1 - Questions 1. Occupational health and safety is the primary factor that needs to be considered in the mining industry. Discuss this statement. 2. Define the fo ...

Projectflow processing of liquor in a mineral refining

Project Flow Processing of Liquor in a Mineral Refining Plant The aim of this project is to design a flow processing system of liquor (slurry) in a mineral (aluminum) refining plant. Aluminum is manufactured in two phase ...

Learning outcomes evaluate multiuser communication and

Learning Outcomes Evaluate multiuser communication and resource sharing techniques; Apply the techniques of, and report on, digital communication applications using Matlab and hardware devices. Assignment Description The ...

Operations engineering assignment -please select only one

Operations Engineering Assignment - Please select only one of the following case studies for your assignment: CASE A. Tesla Motors Tesla is an innovative manufacturer that designs, assemble and sells fully electric vehic ...

Select a risk problem from the list below and prepare a

Select a risk problem from the list below and prepare a risk management plan in accordance with AS/NZS ISO 31000:2009. Please ensure that: - Establish the context clearly, in accordance with the Standard; - Define your s ...

Engineering materials term paper assignment -conduct a

ENGINEERING MATERIALS TERM PAPER ASSIGNMENT - Conduct a thorough literature search and write a 15-20 page technical review paper on the evolution of the engineering materials used in the manufacturing of any one of the f ...

Task 1using the lab kit design a circuit for the processor

Task 1: Using the lab kit, design a circuit for the processor to control the output of a connected 7-segment LED display device. You will be provided with a standard common anode 7-segment display of the type FND-507 (or ...

Control theory - lab reportsfor experiments 1 to 4 you must

Control Theory - Lab Reports For experiments 1 to 4 you must undertake the following: a) At the start of each section (including the pre-lab activities) there are a number learning outcomes. That is, what students should ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As