Ask Other Engineering Expert

A diffraction grating is an optical element that diffracts light into its constituent wavelength (colors). It is an excellent device used in laboratory to study the spectra.

Construction : A diffraction grating is consisting of a large number of equidistance parallel fine scratches (line) of equal width on an optically flat surface of transparent material. It is possible to put a large number of lines (scratches) per centimeter on the transparent material, e.g. the 6000 lines/cm on it using a diamond tipped tool. Since all the lines are drawn in same plane that's why it is called a plane transmission grating. The scratches are opaque ( non - transparent part ) but the areas between the scratches can transmit light. Thus, a diffraction grating becomes a multitude of parallel slit sources when light falls upon it.

There are typically two different types of diffraction grating used in general. A diffraction grating can be a reflection grating or a transmission grating. The most common type of diffraction grating is a plane grating. A transmission grating is produced in the same way as a reflection grating. In order to prepare a plane transmission grating the lines are drawn on plane transparent surface and in case of reflection grating these lines or scratches are drawn against a silver coating surface.

Transmission gratings are usually prepared with an anti-reflection coating whereas reflection gratings are normally coated with a reflective coating, usually aluminum. Transmission gratings offer high efficiency and are generally easier to align as compare the reflection grating.

The original grating so produced is quite expensive ( also known as master grating ), so their replicas are generally used in laboratory. A replica grating can be prepared in laboratory using the following procure. A thin layer of cellulose acetate solution is poured over the surface of an original grating and then it is allowed to dry. Now this thin layer of cellulose acetate is stripped - off from the original grating and then it is allowed to dry. Now this thin layer of cellulose acetate is stripped - off from the original grating surface. The impression of this grating retains this thin film. In order to prepare a plane transmission grating this thin film. In order to prepare a plane transmission grating this thin film is fixed in between two transparent glass plates and in case of reflection gratings this thin film is fixed against a silver polished surface.

Theory : Consider a parallel beam of light of wavelength 'l' incident normally on the grating surface. This case of plane transmission grating can be considered as a case of N - similar parallel slit. The width of each slit is 'a' and separated by an opaque spacing of width 'b'. The sum of this slit width 'a' and opaque spacing 'b' is known as grating element. [(a + b) = Grating element].

According Huygens's principle, each point of the incident wave front acts like a new wave front, so each slit becomes a new source and emits out secondary wavelets emerging from all the points in a single slit I a direction ?, (? = Angle of diffraction, we are considering those secondary wavelets which are diffracted in a direction ?) can be considered to be equivalent to a single wave of amplitude starting from the centre of the slit.

If the total number of slits in grating is assumed to be N, thus the waves diffracted from all the slits in direction are equivalent to N parallel waves each from the middle points of the slits S1, S2, S3 ....... SN-1, SN respectively.

In result, these N parallel waves interfere and gives interface pattern i.e. maxima and minima on screen.

Now from equation (3) and equation (4) it is clear that the phase difference between the successive wavelets is 2B. Now in order to calculate the resultant amplitude of N waves in a direction ?, having a common phase 2B and common amplitude. We use vector polygon method (As in case of single slit).

Let us draw equal distance AB1, B1 B2.......BN-1 BN representing equal amplitude R with a common phase difference of 2B among them.

Equation (11) gives the intensity of principle maxima, since the number of lines 'N' are very large hence these maxima are very intense and called principle maxima.

(2) Position of principle maxima : The position of principle maxima can be evaluated as

Equation (13) is known as grating equation. If we put n=0, we have ? = 0 i.e. at point P0. On screen all the waves arrive in same phase and a central bright fringe will be found there. This central maxima is also known as zero order principle maxima.

(3) Position of minima : In order to calculate the position of minima we have to consider only those value of B for which only the numerator of the term sin NB / Sin B is zero. i.e. for minima where m has all integer value except m ? 0, N, 2N ......... because for these values of m, sin B = 0 and gives the position of corresponding principle maxima.

From these values, now it is clear that there are (N-1) equally spaced minima exist between two consecutive principle maxima corresponding to 0 and N.

(4) Condition for secondary maxima : There are (N-1) equally spaced minima exist between two consecutive principle maxima, so there should be (N-2) other maxima known as secondary maxima between two adjacent principle maxima. These maxima are known as secondary maxima.

In order to calculate the position of these secondary maxima, on differentiating equation (10) with respect to B and equating it equal to zero, we have the root of equation (19), other than those, for which B = ± nπ (this value of B gives position of principle maxima) gives rise to position of secondary maxima.

(5) Intensity of secondary maxima : It is clear from equation (22) that with increase in N (number of slits), the intensity of secondary maxima decreases. Hence in general secondary maxima are not visible

Other Engineering, Engineering

  • Category:- Other Engineering
  • Reference No.:- M9504087

Have any Question?


Related Questions in Other Engineering

Register design a cpu register is simply a row of

Register design A CPU register is simply a row of flip-flops (i.e. SR, JK, T, etc) put side by side in an array to make the size of register required. For example, an 8 bit register has 8 flip-flops side by side for stor ...

A detailed review of spatial modulation and simulation

A Detailed Review of Spatial Modulation and Simulation Learning Outcomes a. Learn how to model mobile communication channels d. Discern knowledge development and directions on the recent advances in 4G to the research pr ...

Mine safety amp environmental engineering assignment -part

Mine Safety & Environmental Engineering Assignment - Part 1 - Questions 1. Occupational health and safety is the primary factor that needs to be considered in the mining industry. Discuss this statement. 2. Define the fo ...

Projectflow processing of liquor in a mineral refining

Project Flow Processing of Liquor in a Mineral Refining Plant The aim of this project is to design a flow processing system of liquor (slurry) in a mineral (aluminum) refining plant. Aluminum is manufactured in two phase ...

Learning outcomes evaluate multiuser communication and

Learning Outcomes Evaluate multiuser communication and resource sharing techniques; Apply the techniques of, and report on, digital communication applications using Matlab and hardware devices. Assignment Description The ...

Operations engineering assignment -please select only one

Operations Engineering Assignment - Please select only one of the following case studies for your assignment: CASE A. Tesla Motors Tesla is an innovative manufacturer that designs, assemble and sells fully electric vehic ...

Select a risk problem from the list below and prepare a

Select a risk problem from the list below and prepare a risk management plan in accordance with AS/NZS ISO 31000:2009. Please ensure that: - Establish the context clearly, in accordance with the Standard; - Define your s ...

Engineering materials term paper assignment -conduct a

ENGINEERING MATERIALS TERM PAPER ASSIGNMENT - Conduct a thorough literature search and write a 15-20 page technical review paper on the evolution of the engineering materials used in the manufacturing of any one of the f ...

Task 1using the lab kit design a circuit for the processor

Task 1: Using the lab kit, design a circuit for the processor to control the output of a connected 7-segment LED display device. You will be provided with a standard common anode 7-segment display of the type FND-507 (or ...

Control theory - lab reportsfor experiments 1 to 4 you must

Control Theory - Lab Reports For experiments 1 to 4 you must undertake the following: a) At the start of each section (including the pre-lab activities) there are a number learning outcomes. That is, what students should ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As