Ask Question, Ask an Expert

+61-413 786 465

info@mywordsolution.com

Ask Other Engineering Expert

1. The instruction set architecture for a simple computer must support access to 64 KB of byte-addressable memory space and eight 16-bit general-purpose CPU registers.

a. If the computer has three-operand machine language instructions that operate on the contents of two different CPU registers to produce a result that is stored in a third register, how many bits are required in the instruction format for addressing registers?

b. If all instructions are to be 16 bits long, how many op codes are available for the three-operand, register operation instructions described above (neglecting, for the moment, any other types of instructions that might be required)?

c. Now assume (given the same 16-bit instruction size limitation) that, besides the instructions described in (a), there are a number of additional two-operand instructions to be implemented, for which one operand must be in a CPU register while the second operand may reside in a main memory location or a register. If possible, detail a scheme that allows for at least 50 register-only instructions of the type described in (a) plus at least 10 of these two-operand instructions. (Show how you would lay out the bit fields for each of the machine language instruction formats.) If this is not possible, explain in detail why not and describe what would have to be done to make it possible to implement the required number and types of machine language instructions.

2. Multiplication of two 4-bit numbers (as shown in Figure 1) can be implemented as a Wallace tree multiplier (as shown in Figure 2) by using carry saver adders.

1936_Multiplication.jpg

1346_Wallace tree.jpg

Figure. 2 The Wallace tree multiplier for 4-bit numbers

Show Figures 1 and 2 for the following multiplication of a 5-bit number and 4-bit number:

1031_Wallace tree1.png

3. Conversion from decimal fraction to binary fraction is accomplished by multiplying the number by 2, using the integer part of the product as the next digit (and then discarding the integer). For example

.625 × 2 = 1.25 .1(the integer part of this product is 1)
.25 × 2 = 0.50 .10(the integer part of this product is 0)
.50 × 2 = 1.00 .101(the integer part of this product is 1)

So, 0.625 can be represented by .101 in binary (.101 = 1/2 + 0/4 + 1/8 = .625)

Show how the decimal value -27.5625 would be represented in IEEE 754 single (32 bits) and double (64 bits) precision formats. (Reminder: single precision exponents are expressed in excess-127 notation, and double precision exponents are expressed in excess-1023 notation)

Other Engineering, Engineering

  • Category:- Other Engineering
  • Reference No.:- M91724280
  • Price:- $75

Guranteed 36 Hours Delivery, In Price:- $75

Have any Question?


Related Questions in Other Engineering

Task 1using the lab kit design a circuit for the processor

Task 1: Using the lab kit, design a circuit for the processor to control the output of a connected 7-segment LED display device. You will be provided with a standard common anode 7-segment display of the type FND-507 (or ...

Control theory - lab reportsfor experiments 1 to 4 you must

Control Theory - Lab Reports For experiments 1 to 4 you must undertake the following: a) At the start of each section (including the pre-lab activities) there are a number learning outcomes. That is, what students should ...

Select a risk problem from the list below and prepare a

Select a risk problem from the list below and prepare a risk management plan in accordance with AS/NZS ISO 31000:2009. Please ensure that: - Establish the context clearly, in accordance with the Standard; - Define your s ...

Mine safety amp environmental engineeringpart 1 questions1

Mine Safety & Environmental Engineering Part 1. Questions 1. Occupational health and safety is the primary factor that needs to be considered in the mining industry. Discuss this statement. 2. Define the following terms ...

Engineering materials term paper assignment -conduct a

ENGINEERING MATERIALS TERM PAPER ASSIGNMENT - Conduct a thorough literature search and write a 15-20 page technical review paper on the evolution of the engineering materials used in the manufacturing of any one of the f ...

Projectflow processing of liquor in a mineral refining

Project Flow Processing of Liquor in a Mineral Refining Plant The aim of this project is to design a flow processing system of liquor (slurry) in a mineral (aluminum) refining plant. Aluminum is manufactured in two phase ...

Assignment 11 what is the purpose of ore reserve and

ASSIGNMENT 1 1. What is the purpose of ore reserve and resource estimation? Why are resource and reserve estimates important to the mining industry? 2. What is meant by ore? What is meant by the term waste? How is the di ...

Conceptual design of forced-free-mixed convection

Conceptual Design of Forced-Free-Mixed Convection Experiment This assessment is to be completed individually. 1. Learning Outcomes: - Develop a basic ability to conceptually design an experimental apparatus - Use theory ...

Homework - risk and decision management1 you are working

Homework - Risk and Decision Management 1) You are working program X. The total budget allocated to the program is $100 M and it is to be completed in 24 mo. range (R) and passenger capacity (C) are two key performance p ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As