Ask Computer Engineering Expert

1) Let N1(t) and N2(t) be independent Poisson processes with rates, λ1 and λ2, respectively. Let N(t) = N1(t) + N2(t).

a) What is the distribution of the time till the next epoch of N2(t)?

b) What is the probability that the next epoch of N(t) is an epoch in N1(t)?

c) What is the distribution of the next epoch of N(t)?

d) What is the mean number of N1(t) epochs before the next epoch of N2(t)?

2) Let {Yn, n ≥ 1} be a sequence of iid random variables with Pr{Yn = 2} = p = 1 - Pr{Yn = -1}.

Let {Xn, n ≥ 0} be de?ned as X0 = 0 and

Xn+1 = (Xn + Yn+1)+ ,

where θ+ = max(θ, 0).

a) Show that {Xn} is a DTMC.

b) An irreducible DTMC with state space, S is positive recurrent if and only if ∃ a function, f(i), ∀i ∈ S, so that E[f(Xn)|Xn = i] < ∞ and E[f(Xn+1) - f(Xn)|Xn = i] < 0.

Use f(i) = i and this result to obtain a suf?cient condition for the DTMC to be positive recurrent.

c) Let Zk be the number of visits to state, 0 in an interval [0.k). Determine, limn→∞ 1/nE(Zn) in terms of the steady state probability vector, π (need not give exact value).

3) For an irreducible DTMC with state space, S, transition probability matrix, P and stationary probability vector, πT , show that if ∃ i ∈ S, πi > 0, then πj > 0, ∀ j ∈ S.

4) Consider a DTMC with state space, S, transition probability matrix, P and stationary probability vector, πT. De?ne ? = diag(πi), i ∈ S. Show that the time-reversal of this process is also a DTMC with transition probability matrix, ?-1 PT?.

Hint: For a time -reversal, process, transition probability, Pij = Pr{Xn-1 = j|Xn = i}. Write this in terms of Baye's rule.

5) Let {Vi, i ≥ 1} and {Wi, i ≥ 1} be independent sequences of iid random variables with distributions, H and G, respectively. Intervals of length, Vi and Wi are placed alternatively on the positive real line from the origin, in the order, (V1,W1, V2,W2, · · ·). Let

Z(t) = 1 t is in a V interval,

0 Otherwise

a) Determine limt→∞ 1/2 0∫ t I{Z(u)=1}du.

b) Determine limt→∞ Pr{Z(t) = 1}.

6) Consider the two queues shown in Fig. 1. Two packets are trapped in this system where the services are exponentially distributed with rates, λ and µ. {X(t)} and {Y (t)} are the queue length processes of the two queues, as shown in Fig. 1.

a) Argue that X(t) is a CTMC and Y (t) is a CTMC. Write their state transition diagrams.

b) Determine limt→∞ P01(t) for X(t).

c) Determine limt→∞ P01(t) for Y (t).

7) Consider a CTMC, X(t), with state space, S = {0, 1, 2, · · · ,N}. Let the CTMC be a birth-death process, i.e., qii+1 = λ, 0 ≤ i ≤ N - 1, qjj-1 = µ, 1 ≤ j ≤ N and qij = 0, j = i, otherwise.

a) Determine, πn, 0 ≤ n ≤ N.

b) (4 points) Let M(t) be the number of transitions from state, n to n + 1, 0 < n < N. Find limt→∞ M(t)t.

Hint: Consider visits to state n and use RRT.

8) There are n machines in a factory. Each machine gets repaired according to a Poisson process of rate, λ, independent of other machines. There are servicemen that ?x the repaired machines. Assume there are n servicemen so that each repaired machine is ?xed by a different service man.

Each service man ?xes a machine according to an exponential distribution, with rate, µ. Let X(t) denote the number of repaired machines in the factory.

a) Show that X(t) is a CTMC.

b) Find the steady state probability, πk = limt→∞ Pr{X(t) = k}.

c) Suppose each working machine produces a revenue, r and each repaired machine costs, c units of repair charges, then determine the average pro?t obtained in a day.

9) Consider an M/G/1 queue with Poisson arrivals at rate, λ. Let the service time distribution be F(x) (density, f(x)), with mean, E(X) = 1
µ and second moment, X2. Let ρ ? = λE(X) = λµ.

a) What is the probability that the server is busy and the server is idle?

b) Show that the mean waiting time, W (mean time in the queue excluding the service time) is W = ρR (1-ρ) , where R is the mean residual service time of the customer in service.

Hint: Use the result of Part # 9a) and write W in terms of residual service time and sum of service times of the others waiting in the queue, using Waldt's Lemma and Little's theorem.

c) Hence, derive the Pollakzek-Kinchine (P-K) mean value formula. Remark: This was the original proof for P-K formula using Little's theorem. This gives the mean value but cannot give the waiting time distribution which the EMC approach discussed in class gives.

d) Assume that whenever the server is idle, it goes into a vacation (like into a sleep or a hibernate mode) with mean vacation time, V and second moment, V 2. Show that the mean waiting time in this case, WV is given by WV = W + (1-ρ)V 2 2V , where W is what you obtained in Part # 9c).

10) Consider the M/G/∞ queue with Poisson arrivals (rate, λ) and in?nite number of servers, each with a generalized service time distribution, F(x) (density, f(x)), with mean service time, E(X) = 1 µ.

Let N(t) be the queue length process at time, t.

a) Show that the probability, p(t) that an arrival in (0, t) is still in service at time, t is p(t) = 1/t R t0 [1 - F(x)]dx.

Hint: Assume that the exact arrival epoch is x. Then write p(t|x), i.e., the probability, p(t) conditioned on x. Then average over, x. What do you know about the distribution of x conditioned on t for a Poisson arrival?

b) Show that Pr{N(t) = n} = e-λtp(t) [λtp(t)]nn!

Hint: First assume that m + n arrivals took place in (0, t). Conditioned on this fact, ?nd the probability that n of them remain at time, t, using the result of Part #10a). Then average over m using the fact that arrivals are Poisson and use the fact that P∞ m=0 αn n! = eα.

c) Hence show that the stationary probability, πn = limt→∞ Pr{N(t) = n} = e-ρ ρnn!,

where ρ
? = λE(X) = λµ.

Remark: We already showed this result for the M/M/∞ queue in class. This shows that the result holds at steady state for an in?nite server system with Poisson arrivals, irrespective of the service time distribution.

Computer Engineering, Engineering

  • Category:- Computer Engineering
  • Reference No.:- M91264959

Have any Question?


Related Questions in Computer Engineering

Does bmw have a guided missile corporate culture and

Does BMW have a guided missile corporate culture, and incubator corporate culture, a family corporate culture, or an Eiffel tower corporate culture?

Rebecca borrows 10000 at 18 compounded annually she pays

Rebecca borrows $10,000 at 18% compounded annually. She pays off the loan over a 5-year period with annual payments, starting at year 1. Each successive payment is $700 greater than the previous payment. (a) How much was ...

Jeff decides to start saving some money from this upcoming

Jeff decides to start saving some money from this upcoming month onwards. He decides to save only $500 at first, but each month he will increase the amount invested by $100. He will do it for 60 months (including the fir ...

Suppose you make 30 annual investments in a fund that pays

Suppose you make 30 annual investments in a fund that pays 6% compounded annually. If your first deposit is $7,500 and each successive deposit is 6% greater than the preceding deposit, how much will be in the fund immedi ...

Question -under what circumstances is it ethical if ever to

Question :- Under what circumstances is it ethical, if ever, to use consumer information in marketing research? Explain why you consider it ethical or unethical.

What are the differences between four types of economics

What are the differences between four types of economics evaluations and their differences with other two (budget impact analysis (BIA) and cost of illness (COI) studies)?

What type of economic system does norway have explain some

What type of economic system does Norway have? Explain some of the benefits of this system to the country and some of the drawbacks,

Among the who imf and wto which of these governmental

Among the WHO, IMF, and WTO, which of these governmental institutions do you feel has most profoundly shaped healthcare outcomes in low-income countries and why? Please support your reasons with examples and research/doc ...

A real estate developer will build two different types of

A real estate developer will build two different types of apartments in a residential area: one- bedroom apartments and two-bedroom apartments. In addition, the developer will build either a swimming pool or a tennis cou ...

Question what some of the reasons that evolutionary models

Question : What some of the reasons that evolutionary models are considered by many to be the best approach to software development. The response must be typed, single spaced, must be in times new roman font (size 12) an ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As