Ask Homework Help/Study Tips Expert

The primary goal of this project is for you to develop skills in expert circuit design (including the use of cells), simulation and layout. You may work individually or in groups of 2.

Your task is to implement a fast 16-­-bit CMOS adder. You can implement any kind of adder EXCEPT for a standard static ripple adder. So, for example, you can implement a carry-­-skip or carry look-­-ahead adder, Laner-­-Fischer, Brent-­-Kung, Kogge-­-Stone, Slanskly, Han-­-Carlson, etc. You CAN do a ripple adder as long as you do it in an alternative logic family such as Domino logic or pass-­-transistor logic (hint: one of these is likely to be easiest and perhaps smallest, whereas something like Han-­- Carleson, etc., will likely be fastest).

To add an element of fun, awards may be given to the student teams that produce the fastest adders and the smallest ones, with double-­-points for both! Professor Kleinfelder reserves the right to choose the winner(s) based on his judgment of the over-­-all quality of the projects and not merely on performance numbers.

To give the contest a level playing field, all inputs must be designed to be compatible with minimum-­-sized input inverters or buffers as input signals. Although you need not include these, no excessively large transistors should be used at the inputs (you can, if you wish, use extra inverters, but include them in your area computation).

Both the inputs and the outputs must all be non-­-inverting. If you require A an A_bar, etc., as inputs, then you must include the extra inverters to produce them. The exception is for fully-­-differential designs, which may use both in and in_bar for all inputs and outputs without adding special inverters to provide them.

Of course, it must function correctly as an adder! It is also your job to determine the critical path for your adder. In many cases - but not always -­- it would be something like this: Initially have all inputs (A0-­-15, B0-­-15, Cin) low, and then raise all A's and Cin high simultaneously. Measure the time between when Cin goes high and Cout goes high, and the time until the slowest Sum bit changes. After it settles, make all inputs low again and measure those delays too. Do it yet again, but with all B's going high, and then going low. The speed of the chip is the WORST (longest) delay time for any of these transitions.

To measure the size of your adder, you will calculate the area in square microns of the smallest rectangle (on an X-­-Y grid, not tilted) that will encompass the entire adder along with any necessary inverters.

To measure both, multiply area times the worst-­-case rise/fall time. (Smaller is better, obviously.)

Creativity is encouraged, and I'm looking forward to seeing how people try to go as fast as possible. Gaming the adder such that it will only work fast for the above test is not fair, though. On the other hand, I will respect efforts to make the smallest possible adder regardless of speed.

Your professional-­-looking report should include the following:

- A description of the adder's approach and other commentary, conclusions, etc. You may use figures from the book with appropriate attribution, but you may NOT use figures, text, etc. from the internet, other student's work etc. Copyright is violated by over-­-use of others' figures, etc., even with attribution.

- Plots and schematics of the whole adder and the various cells (1 bit adder, etc.). Please provide a separate plot that shows the cell hierarchy.

- You MUST use cells appropriately. For example, people would normally have a cell for one bit, for groups of bits (e.g. every 4), for any ancillary logic, and for the whole adder. Use a minimum of "painted" connections (metal, etc., painted over or between the cells). Ideally, cells should abut without any painted connections between them. Designs that are "flat" - without hierarchy - will be considered seriously incomplete.

- Simulation results that demonstrates speed, e.g., shows the propagation of the carry down the whole chain and the evolution of the sum bits. Please provide simulation results from the extracted layout.

- A summary box giving the size and worst-­-case speed of the adder, plus the two results multiplied together.

Homework Help/Study Tips, Others

  • Category:- Homework Help/Study Tips
  • Reference No.:- M92027750

Have any Question?


Related Questions in Homework Help/Study Tips

Review the website airmail service from the smithsonian

Review the website Airmail Service from the Smithsonian National Postal Museum that is dedicated to the history of the U.S. Air Mail Service. Go to the Airmail in America link and explore the additional tabs along the le ...

Read the article frank whittle and the race for the jet

Read the article Frank Whittle and the Race for the Jet from "Historynet" describing the historical influences of Sir Frank Whittle and his early work contributions to jet engine technologies. Prepare a presentation high ...

Overviewnow that we have had an introduction to the context

Overview Now that we have had an introduction to the context of Jesus' life and an overview of the Biblical gospels, we are now ready to take a look at the earliest gospel written about Jesus - the Gospel of Mark. In thi ...

Fitness projectstudents will design and implement a six

Fitness Project Students will design and implement a six week long fitness program for a family member, friend or co-worker. The fitness program will be based on concepts discussed in class. Students will provide justifi ...

Read grand canyon collision - the greatest commercial air

Read Grand Canyon Collision - The greatest commercial air tragedy of its day! from doney, which details the circumstances surrounding one of the most prolific aircraft accidents of all time-the June 1956 mid-air collisio ...

Qestion anti-trustprior to completing the assignment

Question: Anti-Trust Prior to completing the assignment, review Chapter 4 of your course text. You are a manager with 5 years of experience and need to write a report for senior management on how your firm can avoid the ...

Question how has the patient and affordable care act of

Question: How has the Patient and Affordable Care Act of 2010 (the "Health Care Reform Act") reshaped financial arrangements between hospitals, physicians, and other providers with Medicare making a single payment for al ...

Plate tectonicsthe learning objectives for chapter 2 and

Plate Tectonics The Learning Objectives for Chapter 2 and this web quest is to learn about and become familiar with: Plate Boundary Types Plate Boundary Interactions Plate Tectonic Map of the World Past Plate Movement an ...

Question critical case for billing amp codingcomplete the

Question: Critical Case for Billing & Coding Complete the Critical Case for Billing & Coding simulation within the LearnScape platform. You will need to create a single Microsoft Word file and save it to your computer. A ...

Review the cba provided in the resources section between

Review the CBA provided in the resources section between the Trustees of Columbia University and Local 2110 International Union of Technical, Office, and Professional Workers. Describe how this is similar to a "contract" ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As