Ask Statistics and Probability Expert

X is a random variable, normally distributed (with a normal probability density function), with mean µX and variance σ2 . Conventional shorthand notation for this is X ~ N (µX, σ2 ).

X¯ is a random sample mean computed from n independent random selections of X-values form the population. Likewise for independent random variable Y , corresponding to a different population; i.e. Y ~ N (µY , σ2 ).

Y¯ is also computed from the random, independent selection of n ( same n as that for the X population) individual Y-values. The population variances, σ2 and σ2 are known and they are not equal to each other. The population means

µX and µY are not known.

(a) What is the standard deviation (also called standard error) of the mean X¯ , i.e. σX¯ ?

(b) What is the population variance of the difference between sample means, X¯ - Y¯ (a common notation for this variance is σ2-X-Y), in terms of population X and population Y parameters, and n.

(c) What is E[X¯ - Y¯ ] in terms of population parameters?

(d) Identify the probability density function (pdf) for X¯ - Y¯ using shorthand notation

like that used to identify the pdfs for X and Y ; i.e. the N ( , ) notation. (Of course, correct expressions should be used for the mean and variance of X¯ - Y¯ .

(e) A statistical test of H0 is to be done using n particular values from population X, {x1, x2, . . . , xn}, and n particular values from population Y , {y1, y2, . . . , yn}.The null hypothesis, H0, is H0 : µXY ≤ µ0. This is a one-sided test. Keep in mind that, although the null hypotheses says µX - µY ≤ µ0, the null hypothesis is tested with a test statistics in which µXY is set equal to µ0. Because the test is one-sided, deviations of the test statistic from that expected under H0 in only one direction support the alternative hypothesis, HA.

In this case, large positive deviations from the expected support HA. State the alternative hypothesis, HA.

(f) Write an equation for the conventional test statistic, giving it the name z*; lower case because it is computed from particular values of X and Y in part (e) above. Be sure to use µ0 in this test statistic, rather than µX¯ -Y¯ . µ0 is the same as µX¯ -Y¯ only when H0 is true.

(g) Consider a population of such test statistics, each computed with n independent, random X-values, and n independent, random Y -values, so the means X¯ and Y¯ are random variables. Consequently, the test statistic is random; let's call it Z*. Write the expression
for Z* (in which µ0 should appear, as in (f) above).

(h) The test statistic Z* has different pdfs under H0 and HA. This is the essence of hypothesis testing. Write the expression for Z* in the case where the null hypothesis is true. In this case, the true difference of population means µXY is equal to µ0. Therefor, replace µ0 in the test statistic in part (g) above by µX - µY . Call this test statistic Z* to clearly

identify it as the test statistic in the case where µX - µY = µ0. Identify the pdf of Z* continuing to use the standard short-hand notation above).

(i) In the case where HA is true, and µX - µY > µ0 by some amount δ. Consequently, µ0 can be written as µ0 = (µX - µY ) - δ. Substitute this expression for µ0 into your test statistic in part (g) above, and call it Z*FALSE to clearly identify it as the test statistic where H0 is false (HA is true).

(j) This is a good time to check your work so far. Z*TRUE should be a standard normal random variable. Express Z*FALSE as the sum of 2 terms, where one of the terms is identical to Z*TRUE, and the other is a constant, δ/σ ¯X ¯Y . If this step is not consistent with what you TRUE X-Y have obtained up to this point, there is some error somewhere.

Identify the pdf of Z*FALSE (using the same shorthand notation).

(k) The statistical test is to be done at a significance level α, so H0 will be rejected if Z* > z1-α, i.e., the (1 - α) quantile of a standard normal random variable. An example is α = 0.05. We demand a power (1 - β). This means that we want a probability of rejecting H0 when it is false (so the true and hypothesized means differ by δ) to be (1 - β).

One can ask, by how much does the pdf of Z*TRUE have to be shifted rightward to give a Z*FALSE such that samples from the Z*FALSE fall in the rejection region consisting of values greater than the (1 - α) quantile of a standard normal random variable, Z*TRUE, with probability (1- β). The answer is, in order to achieve the specified power, the β quantile of Z*FALSE must coincide with the 1 - α quantile of the standard normal random variable Z*TRUE , z1-α.

This shift is z1-α - zβ.

Sketch the pdf of Z*TRUE(call the abscissa variable z) and mark the point z1-α on the z axis.

(l) On the same plot, sketch the pdf for Z*FALSE so that its β quantile coincides with the 1 - α quantile of Z*TRUE.

(m) Write an equation for δ that gives the specified power (1 - β), at the specified value of α, with the number of sample points, n, and given σ2X and σ2Y .

Statistics and Probability, Statistics

  • Category:- Statistics and Probability
  • Reference No.:- M91973981

Have any Question?


Related Questions in Statistics and Probability

Introduction to epidemiology assignment -assignment should

Introduction to Epidemiology Assignment - Assignment should be typed, with adequate space left between questions. Read the following paper, and answer the questions below: Sundquist K., Qvist J. Johansson SE., Sundquist ...

Question 1 many high school students take the ap tests in

Question 1. Many high school students take the AP tests in different subject areas. In 2007, of the 144,796 students who took the biology exam 84,199 of them were female. In that same year,of the 211,693 students who too ...

Basic statisticsactivity 1define the following terms1

BASIC STATISTICS Activity 1 Define the following terms: 1. Statistics 2. Descriptive Statistics 3. Inferential Statistics 4. Population 5. Sample 6. Quantitative Data 7. Discrete Variable 8. Continuous Variable 9. Qualit ...

Question 1below you are given the examination scores of 20

Question 1 Below you are given the examination scores of 20 students (data set also provided in accompanying MS Excel file). 52 99 92 86 84 63 72 76 95 88 92 58 65 79 80 90 75 74 56 99 a. Construct a frequency distributi ...

Question 1 assume you have noted the following prices for

Question: 1. Assume you have noted the following prices for paperback books and the number of pages that each book contains. Develop a least-squares estimated regression line. i. Compute the coefficient of determination ...

Question 1 a sample of 81 account balances of a credit

Question 1: A sample of 81 account balances of a credit company showed an average balance of $1,200 with a standard deviation of $126. 1. Formulate the hypotheses that can be used to determine whether the mean of all acc ...

5 of females smoke cigarettes what is the probability that

5% of females smoke cigarettes. What is the probability that the proportion of smokers in a sample of 865 females would be greater than 3%

Armstrong faber produces a standard number-two pencil

Armstrong Faber produces a standard number-two pencil called Ultra-Lite. The demand for Ultra-Lite has been fairly stable over the past ten years. On average, Armstrong Faber has sold 457,000 pencils each year. Furthermo ...

Sppose a and b are collectively exhaustive in addition pa

Suppose A and B are collectively exhaustive. In addition, P(A) = 0.2 and P(B) = 0.8. Suppose C and D are both mutually exclusive and collectively exhaustive. Further, P(C|A) = 0.7 and P(D|B) = 0.5. What are P(C) and P(D) ...

The time to complete 1 construction project for company a

The time to complete 1 construction project for company A is exponentially distributed with a mean of 1 year. Therefore: (a) What is the probability that a project will be finished in one and half years? (b) What is the ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As