+61-413 786 465

[email protected]

## Statistics

1) The t and F Distributions

The T random variable with v degrees of freedom has the distribution

Show that the random variable F = T2 has the F distribution with 1 and v degrees of freedom.

2) An Unbiased Estimate of σ

The chi distribution models the square root of a chi-square random variable:

Y= √x      X~ x2 v

(a) Find the pdf of the chi distribution.

(b) We know that the sample variance from a normal distribution follows a chi-square distribution

Find the expected value of the sample standard deviation, s, and suggest an adjustment that would make it unbiased. You may find the following formulas useful:

3) A Catch-and-Release Estimate

A park has N raccoons of which 10 were previously captured and tagged. Suppose that 20 raccoons are captured. Find the probability that n = 5 of these are found to be tagged. Denote this probability by p(N).

(a) Find the value of N that maximizes p(N); this is called a maximum likelihood estimate. Hint: compare the ratio p(N)/p(N -1) to unity.

(b) Plot the maximum likelihood estimate of N against varying values of n, from 1 to 10.

4) Finite Population Correction Factor

For a finite population of size N with mean µ and variance σ2, it can be shown that the covariance of any two observations in a sample is

and that the sample variance is slightly biased

This means that the variance of the sample mean, when drawn from a finite population, includes a covariance term. This gives rise to the finite population correction factor. Use these relationships to show that the variance of the sample mean is

and that this is estimated by

5) Zero-Intercept Regression

Some phenomena follow a linear model which has an inherent zero response for a zero predictor, so the candidate regression model is

y=βx+ε

(a) Find the ordinary least squares estimator for β  by minimizing the sum of squared errors

(b) It seems reasonable that the variance around the regression line would increase as the predictor increases (think of the line swinging around the fixed "pivot" at the origin). If the error was normally distributed, this could give rise to the conditional distribution

Assuming this distribution, find the maximum likelihood estimator for β .

describe why this is called a ratio estimator.

(c) for the following data, estimate β using both your OLS and MLE estimators.

x  0.5 1.5 3.2 4.2 5.1 6.5

y  1.3 3.4 6.7 8.0 10.0 13.2

6) A Truncated Distribution

Students in several statistics classes were asked to complete a problemnaire. One of the quantities asked was the number of siblings a student had. This is a summary of the responses:

siblings    frequency

0                  4

1                 22

2                 22

3                 11

4                  8

5                  3

6                  3

12               1

20               1

6.1) Problem. Use the sibling data to estimate a distribution for the number of children in a family. Obviously, the number of children is one more than the number of siblings. However, there is a selection bias in this measurement; families with no children cannot be reported this way! Therefore the data follows a zero-truncated Poisson distribution (ZTPD)

(a) Find the MLE for the parameter λ of the ZTPD.

(b) What are the mean and variance of the ZTPD? Rather than directly calculating the moments, you might find it simpler to use the probability generating function

Gk(z) = E[zk]

and then take advantage of the properties of the pgf:

E[K] = G'k(z = 1)   V ar[K] = G"k(z = 1) + G'k(z = 1)- [G'k(z=1)]2

(c) Estimate the mean for the number of children and determine whether the data fits a ZTPD with that mean.

7) Estimating with Confidence The times to failure (in hours) for a sample of n = 30 backup generators are

7494.7       8801.7     9990.7      11277.7     10173.3      7746.8

9003.6       8242.9     4532.2      12541.8      6766.9       9898.9

8922.0       13429.8   17623.5    9135.6        6029.8       9038.7

20972.0     7605.1     5396.6      7528.2        10330.6     6475.4

12390.9     9857.0     7067.6      9704.2         5055.8      9942.4

(a) Find the mean time to failure and a 95% confidence interval (use a t distribution).

(b) Find a 95% confidence interval for the standard deviation (start with a chi-square interval for the variance).

Statistics and Probability, Statistics

• Category:- Statistics and Probability
• Reference No.:- M9290

Have any Question?

## Related Questions in Statistics and Probability

### Introduction to epidemiology assignment -assignment should

Introduction to Epidemiology Assignment - Assignment should be typed, with adequate space left between questions. Read the following paper, and answer the questions below: Sundquist K., Qvist J. Johansson SE., Sundquist ...

### Question 1 many high school students take the ap tests in

Question 1. Many high school students take the AP tests in different subject areas. In 2007, of the 144,796 students who took the biology exam 84,199 of them were female. In that same year,of the 211,693 students who too ...

### Basic statisticsactivity 1define the following terms1

BASIC STATISTICS Activity 1 Define the following terms: 1. Statistics 2. Descriptive Statistics 3. Inferential Statistics 4. Population 5. Sample 6. Quantitative Data 7. Discrete Variable 8. Continuous Variable 9. Qualit ...

### Question 1below you are given the examination scores of 20

Question 1 Below you are given the examination scores of 20 students (data set also provided in accompanying MS Excel file). 52 99 92 86 84 63 72 76 95 88 92 58 65 79 80 90 75 74 56 99 a. Construct a frequency distributi ...

### Question 1 assume you have noted the following prices for

Question: 1. Assume you have noted the following prices for paperback books and the number of pages that each book contains. Develop a least-squares estimated regression line. i. Compute the coefficient of determination ...

### Question 1 a sample of 81 account balances of a credit

Question 1: A sample of 81 account balances of a credit company showed an average balance of \$1,200 with a standard deviation of \$126. 1. Formulate the hypotheses that can be used to determine whether the mean of all acc ...

### 5 of females smoke cigarettes what is the probability that

5% of females smoke cigarettes. What is the probability that the proportion of smokers in a sample of 865 females would be greater than 3%

### Armstrong faber produces a standard number-two pencil

Armstrong Faber produces a standard number-two pencil called Ultra-Lite. The demand for Ultra-Lite has been fairly stable over the past ten years. On average, Armstrong Faber has sold 457,000 pencils each year. Furthermo ...

### Sppose a and b are collectively exhaustive in addition pa

Suppose A and B are collectively exhaustive. In addition, P(A) = 0.2 and P(B) = 0.8. Suppose C and D are both mutually exclusive and collectively exhaustive. Further, P(C|A) = 0.7 and P(D|B) = 0.5. What are P(C) and P(D) ...

### The time to complete 1 construction project for company a

The time to complete 1 construction project for company A is exponentially distributed with a mean of 1 year. Therefore: (a) What is the probability that a project will be finished in one and half years? (b) What is the ...

• 13,132 Experts

## Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

### Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

### Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

### Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of \$ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

### Compute the present value of an 1150 payment made in ten

Compute the present value of an \$1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

### Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of \$ 699 per year for 19 years, given a discount rate of 6 percent per annum. As