Robert Green is the CEO of a nursing home in Orlando, Florida. He is now 50 years old and plans to retire in ten years. He expects to live for 25 years after he retires—that is, until he is 85. He wants a fixed retirement income that has the same purchasing power at the time he retires as $50,000 has today. His retirement income will begin the day he retires, ten years from today, and he will then get 24 additional annual payments. Inflation is expected to be 3 percent per year for ten years (ignore inflation after Robert retires); he currently has $120,000 saved up; and he expects to earn a return on his savings of 7 percent per year, annual compounding. To the nearest dollar, how much must he save during each of the next ten years (with deposits being made at the end of each year) to meet his retirement goal? (Hint: The inflation rate of 3 percent per year is used only to calculate desired retirement income 10 years from now. Ignore inflation after Robert retires).