Ask Statistics and Probability Expert

Question: Prepare a written response to the following questions.

Part -1:

1. List the four steps of hypothesis testing, and explain the procedure and logic of each.

2. Based on the information given for the following studies, decide whether to reject the null hypothesis. Assume that all populations are normally distributed. For each, give:

a. The Z-score cutoff (or cutoffs) on the comparison distribution at which the null hypothesis should be rejected.
b. The Z-score on the comparison distribution for the sample score.
c. Your conclusion.


Population


Study  µ  σ
Sample Score  Tails of Tests
A 5 1 7 0.05  1 (high predicted)
B 5 1 7 0.05 2
C 5 1 7 0.01 1 (High predicted)
D 5 1 7 0.01 2

3. A researcher predicts that listening to music while solving math problems will make a particular brain area more active. To test this, a research participant has her brain scanned while listening to music and solving math problems, and the brain area of interest has a percentage signal change of 58. From many previous studies with this same math problem's procedure (but not listening to music), it is known that the signal change in this brain is normally distributed with a mean of 35 and a standard deviation of 10.

a. Using the .01 level, what should the researcher conclude? Solve this problem explicity using all five steps of hypothesis testing, and illustrate your answer with a sketch showing the comparison distribution, the cutoff (or cutoffs), and the score of the sample on this distribution.

Explain your answer to someone who has never had a course in statistics (but who is familiar with mean, standard deviation, and Z scores).

Part -2:

1. Two boats, the Prada (Italy) and the Oracle (USA), are competing for a spot in the upcoming America's Cup race. They race over a part of the course several times. The sample times in minutes for the Prada were: 12.9, 12.5, 11.0, 13.3, 11.2, 11.4, 11.6, 12.3, 14.2, and 11.3. The sample times in minutes for the Oracle were: 14.1, 14.1, 14.2, 17.4, 15.8, 16.7, 16.1, 13.3, 13.4, 13.6, 10.8, and 19.0. For data analysis, the appropriate test is the t-Test: Two-Sample Assuming Unequal Variances.

The next table shows the results of this independent t-test. At the .05 significance level, can we conclude that there is a difference in their mean times? Explain these results to a person who knows about the t test for a single sample but is unfamiliar with the t test for independent means.

Hypothesis Test: Independent Groups (t-test, unequal variance)

Prada

Oracle

12.170

14.875

mean

1.056

2.208

std. dev.

10

12

n

16

df

-2.7050

difference (Prada - Oracle)

0.7196

standard error of difference

0

hypothesized difference

-3.76

t

.0017

p-value (two-tailed)

-4.2304

confidence interval 95.% lower

-1.1796

confidence interval 95.% upper

1.5254

margin of error

2. The Willow Run Outlet Mall has two Haggar Outlet Stores, one located on Peach Street and the other on Plum Street. The two stores are laid out differently, but both store managers claim their layout maximizes the amounts customers will purchase on impulse. A sample of ten customers at the Peach Street store revealed they spent the following amounts more than planned: $17.58, $19.73, $12.61, $17.79, $16.22, $15.82, $15.40, $15.86, $11.82, $15.85. A sample of fourteen customers at the Plum Street store revealed they spent the following amounts more than they planned when they entered the store: $18.19, $20.22, $17.38, $17.96, $23.92, $15.87, $16.47, $15.96, $16.79, $16.74, $21.40, $20.57, $19.79, $14.83. For Data Analysis, a t-Test: Two-Sample Assuming Unequal Variances was used.

At the .01 significance level is there a difference in the mean amount purchased on an impulse at the two stores? Explain these results to a person who knows about the t test for a single sample but is unfamiliar with the t test for independent means.

Hypothesis Test: Independent Groups (t-test, unequal variance)

Peach Street Plum Street
15.8680 18.2921 mean
2.3306 2.5527 std. dev.
10 14 n

20 df
-2.42414 difference (Peach Street - Plum Street)
1.00431 standard error of difference
0 hypothesized difference

-2.41 t
.0255 p-value (two-tailed)

-5.28173 confidence interval 99.% lower
0.43345 confidence interval 99.% upper
2.85759 margin of error

3. Fry Brothers heating and Air Conditioning, Inc. employs Larry Clark and George Murnen to make service calls to repair furnaces and air conditioning units in homes. Tom Fry, the owner, would like to know whether there is a difference in the mean number of service calls they make per day. Assume the population standard deviation for Larry Clark is 1.05 calls per day and 1.23 calls per day for George Murnen. A random sample of 40 days last year showed that Larry Clark made an average of 4.77 calls per day. For a sample of 50 days George Murnen made an average of 5.02 calls per day. At the .05 significance level, is there a difference in the mean number of calls per day between the two employees? What is the p-value?

Hypothesis Test: Independent Groups (t-test, pooled variance)

Larry George
4.77 5.02 mean
1.05 1.23 std. dev.
40 50 n

88 df
-0.25000 difference (Larry - George)
1.33102 pooled variance
1.15370 pooled std. dev.
0.24474 standard error of difference
0 hypothesized difference

-1.02 t
.3098 p-value (two-tailed)

-0.73636 confidence interval 95.% lower
0.23636 confidence interval 95.% upper
0.48636 margin of error

Part -3:

1. A consumer organization wants to know if there is a difference in the price of a particular toy at three different types of stores. The price of the toy was checked in a sample of five discount toy stores, five variety stores, and five department stores. The results are shown below.
Discount toy Variety Department
$12 15 19
13 17 17
14 14 16
12 18 20
15 17 19
An ANOVA was run and the results are shown below. At the .05 significance level, is there a difference in the mean prices between the three stores? What is the p-value? Explain why an ANOVA was used to analyze this problem.

One factor ANOVA

Mean n Std. Dev
13.2 5 1.30 Discount Toys
16.2 5 1.64 Variety
18.2 5 1.64 Department
15.9 15 2.56 Total

ANOVA table
Source SS df MS F p-value
Treatment 63.33 2 31.667 13.38 .0009
Error 28.40 12 2.367
Total 91.73 14

2. A physician who specializes in weight control has three different diets she recommends. As an experiment, she randomly selected 15 patients and then assigned 5 to each diet. After three weeks the following weight losses, in pounds, were noted. At the .05 significance level, can she conclude that there is a difference in the mean amount of weight loss among the three diets?
Plan A Plan B Plan C
5 6 7
7 7 8
4 7 9
5 5 8
4 6 9

An ANOVA was run and the results are shown below. At the .01 significance level, is there a difference in the weight loss between the three plans? What is the p-value? What can you do to determine exactly where the difference is?

One factor ANOVA

Mean n Std. Dev
5.0 5 1.22 Plan A
6.2 5 0.84 Plan B
8.2 5 0.84 Plan C
6.5 15 1.64 Total

ANOVA table
Source SS df MS F p-value
Treatment 26.13 2 13.067 13.52 .0008
Error 11.60 12 0.967
Total 37.73 14

Statistics and Probability, Statistics

  • Category:- Statistics and Probability
  • Reference No.:- M91694684
  • Price:- $50

Priced at Now at $50, Verified Solution

Have any Question?


Related Questions in Statistics and Probability

Introduction to epidemiology assignment -assignment should

Introduction to Epidemiology Assignment - Assignment should be typed, with adequate space left between questions. Read the following paper, and answer the questions below: Sundquist K., Qvist J. Johansson SE., Sundquist ...

Question 1 many high school students take the ap tests in

Question 1. Many high school students take the AP tests in different subject areas. In 2007, of the 144,796 students who took the biology exam 84,199 of them were female. In that same year,of the 211,693 students who too ...

Basic statisticsactivity 1define the following terms1

BASIC STATISTICS Activity 1 Define the following terms: 1. Statistics 2. Descriptive Statistics 3. Inferential Statistics 4. Population 5. Sample 6. Quantitative Data 7. Discrete Variable 8. Continuous Variable 9. Qualit ...

Question 1below you are given the examination scores of 20

Question 1 Below you are given the examination scores of 20 students (data set also provided in accompanying MS Excel file). 52 99 92 86 84 63 72 76 95 88 92 58 65 79 80 90 75 74 56 99 a. Construct a frequency distributi ...

Question 1 assume you have noted the following prices for

Question: 1. Assume you have noted the following prices for paperback books and the number of pages that each book contains. Develop a least-squares estimated regression line. i. Compute the coefficient of determination ...

Question 1 a sample of 81 account balances of a credit

Question 1: A sample of 81 account balances of a credit company showed an average balance of $1,200 with a standard deviation of $126. 1. Formulate the hypotheses that can be used to determine whether the mean of all acc ...

5 of females smoke cigarettes what is the probability that

5% of females smoke cigarettes. What is the probability that the proportion of smokers in a sample of 865 females would be greater than 3%

Armstrong faber produces a standard number-two pencil

Armstrong Faber produces a standard number-two pencil called Ultra-Lite. The demand for Ultra-Lite has been fairly stable over the past ten years. On average, Armstrong Faber has sold 457,000 pencils each year. Furthermo ...

Sppose a and b are collectively exhaustive in addition pa

Suppose A and B are collectively exhaustive. In addition, P(A) = 0.2 and P(B) = 0.8. Suppose C and D are both mutually exclusive and collectively exhaustive. Further, P(C|A) = 0.7 and P(D|B) = 0.5. What are P(C) and P(D) ...

The time to complete 1 construction project for company a

The time to complete 1 construction project for company A is exponentially distributed with a mean of 1 year. Therefore: (a) What is the probability that a project will be finished in one and half years? (b) What is the ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As