Ask Statistics and Probability Expert

Question 1 of 20

In a one-tailed hypothesis test, a critical point is a point that divides the area under the sampling distribution of a:

A. statistic into one rejection region and one nonrejection region.
B. parameter into one rejection region and one nonrejection region.
C. statistic into one rejection region and two nonrejection regions.
D. parameter into two rejection regions and one nonrejection region.

Question 2 of 20

A two-tailed hypothesis test contains

A. one rejection region and two nonrejection regions.
B. two rejection regions and one nonrejection region.
C. two rejection regions and two nonrejection regions.
D. one rejection region and one nonrejection region.

Question 3 of 20

A researcher wants to test if the mean price of houses in an area is greater than $145,000. The alternative hypothesis for this example will be that the population mean is

A. equal to $145,000.
B. not equal to $145,000.
C. greater than or equal to $145,000.
D. greater than $145,000.

Question 4 of 20

A researcher wants to test if the mean price of houses in an area is greater than $175,000. The null hypothesis for this example will be that the population mean is

A. less than or equal to $175,000.
B. not equal to $175,000.
C. greater than or equal to $175,000.
D. greater than $175,000.

Question 5 of 20

For a one-tailed test, the p-value is

A. the area under the curve between the mean and the observed value of the sample statistic.
B. twice the area under the curve between the mean and the observed value of the sample statistic.
C. the area under the curve to the same side of the value of the sample statistic as is specified in the alternative hypothesis.
D. twice the area under the curve to the same side of the value of the sample statistic as is specified in the alternative hypothesis.

Question 6 of 20

A two-tailed hypothesis test using the normal distribution reveals that the area under the sampling distribution curve of the mean and located to the right of the sample mean equals .028. What is the p-value for this test?

A. .028
B. .056
C. .014
D. .610

Question 7 of 20

In a hypothesis test with hypotheses H0: Mu GE 37and H1: Mu < 37 , a random sample of 54 elements selected from the population produced a mean of 35.8. Assuming that population standard deviation is 8.9 , what is the approximate p-value for this test?

A. .8389
B. .4195
C. .1611
D. .3222

Question 8 of 20

In a hypothesis test with hypotheses Ho: Mu GE 136 and H1: Mu < 136, a random sample of 67 elements selected from the population produced a mean of 130.7. Assume that population sd is 19.2 , and that the test is to be made at the 2% significance level.

What is the value of the test statistic, z?

A. 2.26
B. -1.84
C. 1.52
D. -2.26

Question 9 of 20

A researcher wants to test if the mean price of houses in an area is greater than $145,000. A random sample of 36 houses selected from the area produces a mean price of $149,100. Assume that and that the test is to be made at the 2% significance level.

What is the value of the test statistic, z?

A. -2.10
B. 1.26
C. 2.10
D. -1.26

Question 10 of 20

A researcher wants to test if the elementary school children spend less than 30 minutes per day on homework. A random sample of 61 children from the school shows that they spend an average of 25.9 minutes per day on homework. Assume that minutes, and that the test is to be made at the 1% significance level.

Should you reject or fail to reject the null hypothesis in this test?

A. Reject
B. Fail to reject

Question 11 of 20

In a hypothesis test with hypotheses Ho: Mu LE 54 and H1: Mu > 54, a random sample of 24 elements selected from the population produced a mean of 59.5 and a standard deviation of 14.3. The test is to be made at the 2.5% significance level. Assume the population is normally distributed.

What is the critical value of t?

A. -2.093
B. 2.500
C. 2.064
D. 2.069

Question 12 of 20

In a hypothesis test with hypotheses Ho: Mu LE 54 and H1: Mu >54, a random sample of 24 elements selected from the population produced a mean of 59.5 and a standard deviation of 14.3. The test is to be made at the 2.5% significance level. Assume the population is normally distributed.

What is the value of the test statistic, t?

A. 1.88
B. -1.88
C. 2.92
D. 1.46

Question 13 of 20

In a hypothesis test with hypotheses Ho: Mu GE 74 and H1: Mu < 74, a random sample of 20 elements selected from the population produced a mean of 69.0 and a standard deviation of 13.7. The significance level is 1%. Assume the population is normally distributed.

What is the critical value of t?

A. -2.528
B. -1.328
C. -2.539
D. 3.733

Question 14 of 20

In a hypothesis test with hypotheses Ho: Mu GE 74 and H1: Mu < 74, a random sample of 20 elements selected from the population produced a mean of 69.0 and a standard deviation of 13.7. The significance level is 1%. Assume the population is normally distributed.

Should you reject or fail to reject the null hypothesis in this test?

A. Reject
B. Fail to reject

Question 15 of 20

A company that manufactures light bulbs claims that its light bulbs last an average of 1150 hours. A sample of 25 light bulbs manufactured by this company gave a mean life of 1094 hours and a standard deviation of 174 hours. A consumer group wants to test the hypothesis that the mean life of light bulbs produced by this company is less than 1150 hours. The significance level is 5%. Assume the population is normally distributed.

What is the critical value of t?

A. -1.708
B. -1.711
C. -2.797
D. -2.787

Question 16 of 20

A company that manufactures light bulbs claims that its light bulbs last an average of 1150 hours. A sample of 25 light bulbs manufactured by this company gave a mean life of 1094 hours and a standard deviation of 174 hours. A consumer group wants to test the hypothesis that the mean life of light bulbs produced by this company is less than 1150 hours. The significance level is 5%. Assume the population is normally distributed.

Does the data provide evidence to contradict the company's claim about the average lifetime of their light bulbs?

A. Yes
B. No Reset Selection

Question 17 of 20

In a hypothesis test with hypotheses Ho: p LE .39 and H1: p > .39, a random sample of size 471 produced a sample proportion of .4475.

The test is to be made at the 1% significance level.

What is the critical value of z?

A. 2.05
B. 2.33
C. 1.96
D. 2.58

Question 18 of 20

In a hypothesis test with hypotheses Ho: p GE .76 and H1: p < .76, a random sample of size 953 produced a sample proportion of .7530. The test is to be made at the 5% significance level.

Should you reject or fail to reject the null hypothesis in this test?

A. Reject
B. Fail to reject

Question 19 of 20

In a hypothesis test with hypotheses Ho: p GE .31 and H1: p < .31, a random sample of size 538 produced a sample proportion of .2855. The test is to be made at the 1% significance level.

What is the value of the test statistic, z?

A. 1.23
B. 1.15
C. -1.15
D. -1.23

Question 20 of 20

Which of the following statements describes a Type II error in hypothesis testing?

A. A court declares a defendant guilty, when he is actually innocent.
B. A scientist, trying to support a theory about the number of different species of animals in a particular country, declares the null hypothesis to be "there are 715 different species" when there are actually more than 800.
C. A statistician determines, through hypothesis testing, that the mean number of televisions per household in a certain community is 1.4, when it is actually greater than 1.4.
D. Through hypothesis testing, we find the alternative hypothesis to be true when it is

Statistics and Probability, Statistics

  • Category:- Statistics and Probability
  • Reference No.:- M91751410

Have any Question?


Related Questions in Statistics and Probability

Introduction to epidemiology assignment -assignment should

Introduction to Epidemiology Assignment - Assignment should be typed, with adequate space left between questions. Read the following paper, and answer the questions below: Sundquist K., Qvist J. Johansson SE., Sundquist ...

Question 1 many high school students take the ap tests in

Question 1. Many high school students take the AP tests in different subject areas. In 2007, of the 144,796 students who took the biology exam 84,199 of them were female. In that same year,of the 211,693 students who too ...

Basic statisticsactivity 1define the following terms1

BASIC STATISTICS Activity 1 Define the following terms: 1. Statistics 2. Descriptive Statistics 3. Inferential Statistics 4. Population 5. Sample 6. Quantitative Data 7. Discrete Variable 8. Continuous Variable 9. Qualit ...

Question 1below you are given the examination scores of 20

Question 1 Below you are given the examination scores of 20 students (data set also provided in accompanying MS Excel file). 52 99 92 86 84 63 72 76 95 88 92 58 65 79 80 90 75 74 56 99 a. Construct a frequency distributi ...

Question 1 assume you have noted the following prices for

Question: 1. Assume you have noted the following prices for paperback books and the number of pages that each book contains. Develop a least-squares estimated regression line. i. Compute the coefficient of determination ...

Question 1 a sample of 81 account balances of a credit

Question 1: A sample of 81 account balances of a credit company showed an average balance of $1,200 with a standard deviation of $126. 1. Formulate the hypotheses that can be used to determine whether the mean of all acc ...

5 of females smoke cigarettes what is the probability that

5% of females smoke cigarettes. What is the probability that the proportion of smokers in a sample of 865 females would be greater than 3%

Armstrong faber produces a standard number-two pencil

Armstrong Faber produces a standard number-two pencil called Ultra-Lite. The demand for Ultra-Lite has been fairly stable over the past ten years. On average, Armstrong Faber has sold 457,000 pencils each year. Furthermo ...

Sppose a and b are collectively exhaustive in addition pa

Suppose A and B are collectively exhaustive. In addition, P(A) = 0.2 and P(B) = 0.8. Suppose C and D are both mutually exclusive and collectively exhaustive. Further, P(C|A) = 0.7 and P(D|B) = 0.5. What are P(C) and P(D) ...

The time to complete 1 construction project for company a

The time to complete 1 construction project for company A is exponentially distributed with a mean of 1 year. Therefore: (a) What is the probability that a project will be finished in one and half years? (b) What is the ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As