Ask Statistics and Probability Expert

Q1. In each of the following statements, identify what is wrong.

a. The probability that a randomly selected person has a cellular phone is .65 whereas the probability that a randomly selected person does not have a cellular phone is .40.

b. The probability that a randomly selected person has an AT&T cellular phone is .75 whereas the probability that a randomly selected person has a cellular phone is .65.

c. The probability that a randomly selected person has a Nokia cellular phone is 1.1.

Q2.   Consider the ages of CEOs of companies throughout the United States.

Event A: CEO is under 40

Event B: CEO is at least 30

Event C: CEO is in his or her 50s

Event D: CEO is under 60

a. Are Events A and B mutually exclusive? Explain.

b. Are Events A and C mutually exclusive? Explain.

c. Is Event A a subset of Event C? Explain.

d. Is Event A a subset of Event D? Explain.

Q3. Suppose studies have shown that approximately 20% (.2) of Americans regularly engage in exercise (at least 3 times per week).

a. If one American is randomly selected, what is the probability that he or she does not regularly engage in exercise? Set up calculation.

b. If three Americans are randomly selected, what is the probability that all three regularly engage in exercise? Set up the calculation.

c. What assumption is being made in part b above?

d. If two Americans are randomly selected, what is the probability that the first American regularly engages in exercise while the second American does not regularly engage in exercise? Set up the calculation.

For grading purposes, make sure that the values are in the correct order to verify that you assign the correct probabilities.

Q4.  Consider a situation where a die is rolled. Which of the following explanations more closely describes the relative frequency interpretation of the probability that a rolled die shows a "four" is 1/6?  Explain your answer.

Explanation 1: After more and more rolls, the fraction of "fours" will get closer and closer to 1/6.

Explanation 2: The number of "fours" will always be about 1/6 of the number of rolls.

Q5. Consider the following three events based on a class of kindergarten students.

Event A:   student 1 has the flu

Event B:   student 2 has the flu

Event C:  student 3 has the flu

Are these three events independent?  Explain.

Q6. Suppose a test for a certain disease is given to Mike. The probability of a positive test result is .98 if someone has the disease, but the probability that someone has the disease if the patient's test result is positive is .07. Mike receives a positive test result. The doctor tells Mike that it is very likely that he has the disease. The doctor's response is an example of ______________________.

a. the "Law of Small Numbers"

b. the "The Gambler's Fallacy"

c. the "Confusion of the Inverse"

d. the "Lack of Memory Property"

Q7.   The distribution of grades in a large statistics course is as follows.

Outcome: Grade

Outcome: Numerical Value for the Grade

Probability

A

4.0

.3

B

3.0

.3

C

2.0

.2

D

1.0

.1

F

0.0

.1

Total

 

1.0

a. Set up the calculation for the expected grade in terms of numerical value for the grade.

b. What does the quantity in a above represent? Explain.

Q8. A class of statistics students was asked, "Regarding your weight, do you think you are: about right, overweight, or underweight?" The following table displays the results by gender.

 

Perception about Weight

Gender

About Right

Overweight

Underweight

Total

Female

87

39

3

129

Male

64

3

16

83

Total

151

42

19

212

Event A: the student is a female

Event B: the student is male whose weight perception's "about right"

Event C: The student whose weight perception is either "overweight" or "underweight"

a. What is the probability of Event A? Set up calculation

b.   What is the probability of Event B? Set up calculation

c.   What is the probability of Event C? Set up calculation

d.   Are Events A and B mutually exclusive? Explain.

e.   Are Events B and C mutually exclusive? Explain.

Q9.   Suppose a friend named Megan indicates that she has had a string of "bad luck." Within the past month, she has had to have the alternator replaced on her car, start taking thyroid medication because she was diagnosed as being hypothyroid, and buy a new television because the picture tube went bad on her old television. Megan concludes that she should not have any more problems for a while. Is she assuming the "gambler's fallacy?" Explain.

Q10.   The table below shows the breakdown of actual status versus medical test results for a rare disease where n = 100,000.

 

Results of the Medical Test

 

 

 

Test shows Malignant

Test does not show malignant

Total

Tumor Actually Malignant

800

200

1,000

Tumor Actually Benign

9,900

89,100

99,000

Total

10,700

89,300

100,000

Please show the calculation for parts a through e.

a. What is the base rate for the disease? 

b. What is the sensitivity for this medical test?

c. What is the specificity for this medical test?

d. What is the probability of a false positive for this medical test?

e. What is the probability of a false negative for this medical test?

Q11.  An insurance company expects 10% of its policyholders to collect claims of $400 this year and the remaining 90% to collect no claims. The variable is the amount they will pay in claims per person.

a. Use this information to fill in the following table.

Possible Outcome

in Words

Numerical Outcome:

Amount Pay in Claims per Person

Probability

 

 

 

 

 

 

 

 

 

 b. What is the expected value for the amount they will pay in claims per person? Set up the calculation.

Q12. Refer to the article entitled 21st Birthday from the Penn State Pulse (January, 2001). Located in the Library Reserves--use the Library Reserves link in Angel.  Find the value for the percent of Penn State students that said they consumed more alcohol than usual on their 21st birthday. Convert this percent to a proportion. A random sample of three Penn State students who recently turned 21 was obtained from the Penn State population. Set up the calculation for the probability that the first and the third Penn State student consumed more alcohol than usual on their 21st birthday while Penn State Student 2 did not consume more alcohol than usual on their 21st birthday. Remember, the order of the values is important.

Statistics and Probability, Statistics

  • Category:- Statistics and Probability
  • Reference No.:- M9954025
  • Price:- $70

Priced at Now at $70, Verified Solution

Have any Question?


Related Questions in Statistics and Probability

Introduction to epidemiology assignment -assignment should

Introduction to Epidemiology Assignment - Assignment should be typed, with adequate space left between questions. Read the following paper, and answer the questions below: Sundquist K., Qvist J. Johansson SE., Sundquist ...

Question 1 many high school students take the ap tests in

Question 1. Many high school students take the AP tests in different subject areas. In 2007, of the 144,796 students who took the biology exam 84,199 of them were female. In that same year,of the 211,693 students who too ...

Basic statisticsactivity 1define the following terms1

BASIC STATISTICS Activity 1 Define the following terms: 1. Statistics 2. Descriptive Statistics 3. Inferential Statistics 4. Population 5. Sample 6. Quantitative Data 7. Discrete Variable 8. Continuous Variable 9. Qualit ...

Question 1below you are given the examination scores of 20

Question 1 Below you are given the examination scores of 20 students (data set also provided in accompanying MS Excel file). 52 99 92 86 84 63 72 76 95 88 92 58 65 79 80 90 75 74 56 99 a. Construct a frequency distributi ...

Question 1 assume you have noted the following prices for

Question: 1. Assume you have noted the following prices for paperback books and the number of pages that each book contains. Develop a least-squares estimated regression line. i. Compute the coefficient of determination ...

Question 1 a sample of 81 account balances of a credit

Question 1: A sample of 81 account balances of a credit company showed an average balance of $1,200 with a standard deviation of $126. 1. Formulate the hypotheses that can be used to determine whether the mean of all acc ...

5 of females smoke cigarettes what is the probability that

5% of females smoke cigarettes. What is the probability that the proportion of smokers in a sample of 865 females would be greater than 3%

Armstrong faber produces a standard number-two pencil

Armstrong Faber produces a standard number-two pencil called Ultra-Lite. The demand for Ultra-Lite has been fairly stable over the past ten years. On average, Armstrong Faber has sold 457,000 pencils each year. Furthermo ...

Sppose a and b are collectively exhaustive in addition pa

Suppose A and B are collectively exhaustive. In addition, P(A) = 0.2 and P(B) = 0.8. Suppose C and D are both mutually exclusive and collectively exhaustive. Further, P(C|A) = 0.7 and P(D|B) = 0.5. What are P(C) and P(D) ...

The time to complete 1 construction project for company a

The time to complete 1 construction project for company A is exponentially distributed with a mean of 1 year. Therefore: (a) What is the probability that a project will be finished in one and half years? (b) What is the ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As