Ask Applied Statistics Expert

PART I: Regression Model Diagnostics

For this part, you will use dataset grit study along with the codebook for the data if needed. (If you have a dataset of your own that you prefer to use for this assignment, please consult the instructor for prior approval. To determine whether your dataset is appropriate for this assignment, you will be asked to submit a description of the dataset and information about the variables you wish to analyze, including the measurement scales and basic descriptive data such as means and standard deviations.)

Run a standard simultaneous regression analysis, regressing college students' achievement (Grade1) on the following variables treated as predictors (sex, ethnicity, grit, and constructs 1 to 6). Don't forget to treat properly qualitative variables before carrying out the multiple regression analysis. Simultaneously elicit appropriate diagnostic information to check regression assumptions, multi-collinearity, outliers, leverage, and influence. Paste relevant diagnostic information from the output in answering each of the questions below.

1. Examine the assumptions of normality, linearity, and homoscedasticity through plots and any formal/informal statistical testing or information.

(a) Plot the histogram of standardized residuals and indicate outliers if there is any along with your criterion. Discuss if normality of residual assumption is approximately satisfied or not.

(b) Generate P-P and Q-Q plots of standardized residuals, and comment about normality assumption for the current model.

(c) Plot standardized residuals (Y axis) vs predicted science score (X axis), and comment about linearity and homoscedasticity assumption.

(d) Plot standardized residuals (Y axis) vs each predictor (X axis), and discuss which plots (predictors) can be potentially problematic in the context of linearity and homoscedasticity assumptions. Note that you can use original categorical variables for these plots.

(e) Consider transformations to address problems you found. If you decide that transformations are appropriate, re-run the regression analysis using the transformed variables and report and interpret the results. Be sure to include and discuss all relevant graphs, plots, and tables for parts (a), (b), (c), and (d). If your decision is not to transform any of the variables, defend your decision with proper supporting details.

2. Examine multicollinearity diagnostic information for the current model. (If you transformed some variables, the current model is the new model with transformed variables. If you decided not to transform any variables, the current model is the same as the first model you ran)

(a) Identify and report problematic predictors including the values of diagnostic indices.

(b) Explain why the identified predictors are problematic including what effects of multi-collinearity are.

(c) Explain how you can address the multicollinearity problem that you found and carry out the remedy action that you choose among them. Be sure to examine the issue again and report the results after your action.

3. Examine outliers, leverage, and influence of the current model after you addressed multi-collinearity problem.

(a) Based on the outlier information, what do you conclude about potential outliers? Use a justifiable cutoff for the appropriate analysis of residuals.

(b) Determine (calculate) and apply the leverage cutoff as shown in class for leverage values.

What conclusion do you make concerning the existence of any potential outliers in the data in terms of the predictors? Which case(s) is (are) suspect?

(c) Determine which, if any, cases are unduly influencing the regression. Use Cook's D and standardized DFBETA values to make your determination. State what criteria you used to make your decisions.

(d) Summarize your findings from questions (a), (b), and (c), and explain how your diagnostic information (graphical and numerical) led you to your conclusions. If you identified any outliers on y or the x's (from question (a) above) or influential points (from question (b) and (c) above), state those case(s) (students) and remove them from your data, under the assumption that there was good theoretical reason, and return the subsequent regression analysis. If no aberrant cases are present, just use the information you have to answer the remaining questions.

(e) Rerun the regression now based on a model with aberrant cases deleted. If no cases were identified and deleted from the diagnostic work above, then use the previous regression model from the most recent model above, what conclusions do you draw about the normality of residuals assumption?

(f) Examine normality, linearity, homoscedasticity assumptions one more time for your final model and report the results.

4. Write-up

Assume that you are a researcher who is interested in two primary research questions as follows:

(a) Do the set of predictors account for a significant proportion of variance in score variable (grade1)?

(b) Does each predictor have a significant influence on score variable (grade1), controlling for other variables in the model?

Provide the appropriate SPSS or R output to answer these questions and write-up the results (from the final model) using the statistical write-up notes as a guide (or template). Tables and figures should be properly formatted. Please include your analysis results about model diagnostics (assumptions, multicollinearity, outliers, leverage, and influences) in your writing after addressing the research questions. Do not forget to include confidence intervals and/or effect sizes as part of your write-up.

Note: As I did not ask to drop insignificant predictors for this assignment, the final model could include statistically insignificant predictors.

PART II: Journal Article Review

In this part of assignment you will read an assigned article that reports the results of one or more multiple regression analyses. The purpose of this assignment is to interpret and critique the regression analyses (particularly for a moderator effect) performed in this article. What I expect is a critique paper that should address the following points:

1. Briefly describe the purpose and procedures of the study and the variables analyzed. What are the research questions as they pertain to the regression analyses? Identify the dependent and independent variables.

2. Briefly describe the sample data used (who was included in the sample?), the sample size, how the sample was selected, and the intended population of generalization. Use that information to comment on the adequacy of the sample size for the analyses performed, and the representativeness of the sample for the intended population of generalization.

3. Describe the regression analyses performed in the paper.

4. Interpret the results of the regression analyses performed in the paper.

5. Discuss whether the (regression-related) conclusions drawn in the paper follow from the regression analyses reported.

6. Discuss the extent to which the authors tested and/or addressed the assumptions underlying multiple regressions.

7. Discuss weaknesses or problems with the analyses reported in the paper and describe alter-native analyses that could have, or should have, been performed. If the authors did not test or address the assumptions underlying multiple regression, what are some potential weakness or problems with their quantitative analyses? What analyses should be performed to address these assumptions?

Note 1: In addition to conventional regression analyses, the article may contain analyses that have not been discussed in EDMS 645, 646, and 651(e.g., matching technique, hierarchical or multilevel modeling). You do not need to discuss or critique these analyses technically but still can evaluate the approach conceptually (if you want).

Note 2: There is no limit in terms of length, but this part of assignment typically ends up with approximately 2-3(single-spaced) pages.

PART III: Weighted Least Squares Regression

You can earn up to 3 points by completing this part depending on the level of performance. Estimate the final regression model (and data if you dropped any outliers or transformed variables) you reached in PART I using the weighted least squares (WLS) estimation. The first task would be to generate the weight variable using the approach we discussed in class. After running weighted least squares regression analysis, discuss the differences and similarities in results (e.g., model fit, regression coefficients, and standard errors) between OLS and WLS estimation.

Provide the appropriate (selected) SPSS or R output in your appendix.

Attachment:- Assignment Files.rar

Applied Statistics, Statistics

  • Category:- Applied Statistics
  • Reference No.:- M92477479

Have any Question?


Related Questions in Applied Statistics

Question onea a factory manager claims that workers at

QUESTION ONE (a) A factory manager claims that workers at plant A are faster than those at plant B. To test the claim, a random sample of times (in minutes) taken to complete a given task was taken from each of the plant ...

You are expected to work in groups and write a research

You are expected to work in groups and write a research report. When you work on your report, you need to use the dataset, and other sources such as journal articles. If you use website material, please pay attention to ...

Assignment -for each of the prompts below report the

Assignment - For each of the prompts below, report the appropriate degrees of freedom, t statistic, p-value and plot using the statistical software platform of your choice (R/STATA) 1) A sample of 12 men and 14 women hav ...

Assignment - research topicpurpose the purpose of this task

Assignment - Research topic Purpose: The purpose of this task is to ensure you are progressing satisfactorily with your research project, and that you have clean, useable data to analyse for your final project report. Ta ...

Assessment task -you become interested in the non-skeletal

Assessment Task - You become interested in the non-skeletal effects of vitamin D and review the literature. On the basis of your reading you find that there is some evidence to suggest that vitamin D deficiency is linked ...

Part a -question 1 - an analyst considers to test the order

PART A - Question 1 - An analyst considers to test the order of integration of some time series data. She decides to use the DF test. She estimates a regression of the form Δy t = μ + ψy t-1 + u t and obtains the estimat ...

Medical and applied physiology experimental report

Medical and Applied Physiology Experimental Report Assignment - Title - Compare the working and spatial memory by EEG. 30 students were tested (2 memory games were played to test their memory - a card game and a number g ...

Business data analysis computer assignment -part 1

Business Data Analysis Computer Assignment - PART 1 - Economists believe that high rates of unemployment are linked to decreased life satisfaction ratings. To investigate this relationship, a researcher plans to survey a ...

Question - go to the website national quality forum nqf

Question - Go to the website, National Quality Forum (NQF), located in the Webliography, and download the article by WIRED FOR QUALITY: The Intersection of Health IT and Healthcare Quality, Number 8, MARCH 2008. You are ...

Go to the webliography source for the national cancer

Go to the Webliography source for the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) Program. In the Fast Stats, create your own cancer statistical report, "Stratified by Data Type," and u ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As