Ask Question, Ask an Expert

+61-413 786 465

info@mywordsolution.com

Ask Statistics and Probability Expert

Materials: Bag of 15 bean soup (dry beans), cup, 2 Paper lunch bags, paper and pencil.

1. We shall simulate genetic drift and effects of a bottleneck on genetic drift in this simulation.

Review "Evolution Occurs in Several Ways".

Instructions:

Count out 25 speckled beans, 25 black beans, 25 white beans and 25 red beans (it is easiest if you choose beans of the same size and put in container. The beans represent different alleles. This means each type of bean makes up 25% of the total number of beans (or alleles) (25/100 = 0.25).

Write two hypotheses answering the two questions below:

a. How would the ratio of bean phenotypes change if you randomly pick 40 beans from the container? Will the ratio change significantly in each repetition (generation)?

b. How would the ratio of bean phenotypes change if you only pick 10 beans from the container? Will the ratio change significantly in each repetition (generation)?

Method:

Now take 40 beans from the counter and count the different phenotypes black, white, red and speckled. Write the results in the data chart, then return the beans to the container, shake to mix, and repeat the experiment two more times. Next, take only 10 beans from the container. Count the different beans and add the data to the chart. Return the beans to the container and repeat three more times. Complete the data chart below.

Were your hypotheses correct?

Answer the following questions:

I. What was the range of ratios of bean phenotypes in the large sample? In the small sample?

II. How would genetic drift affect the gene pool in a genetic bottleneck?

III. Could genetic drift lead to evolution of new species? Consider ratios of phenotypes of each small sample. Under which condition would this change lead to speciation?

2. Simulation of Hardy Weinberg Equilibrium

Review "Evolution is Inevitable in Real Populations ", Chapter 11. 3 in your textbook.

Also, web site: http://www.nfstc.org/pdi/Subject07/pdi_s07_m01_02.htm (click the glasses for more help)

We shall simulate the frequency of two alleles in a population in Hardy Weinberg Equilibrium over several generations.

Instructions:

This time the beans will represent alleles (remember we carry two alleles for each trait or gene, one from the father and one from the mother)

The red bean represents a dominant allele and the white bean represents a recessive allele. The homozygous dominant individual is represented by 2 red beans, the homozygous recessive individual is represented by 2 white beans, and heterozygous individuals are represented by one red bean and one white bean.

Method

Count and set aside 60 red beans and 40 white beans. Label one paper bag male and the other paper bag female. Divide beans evenly into bags (30 red beans and 20 white beans into each bag). You will grab one bean from each bag for the allele combination in the F1 generation, for a total of 50 pairs (50 individuals) in the F1 generation.

Preparation:

Calculate the frequency of p (dominant allele - red) and q (recessive allele - white) in population.

p=red beans/total # beans

q=white beans/total # beans

p+q = ?
2pq = ?
P2  = ?
q2 = ?

What does p2, q2 and 2pq represent?

Write a hypothesis answering the following question:

a. If the population is in Hardy Weinberg equilibrium, what would be the frequency of both alleles in the F1, F2 and F3 generations?

Experiment 1

Remove one bean from each bag blindly and set the pair aside. Repeat until all beans are paired. This represents one generation.

1.1 Count:

Red pairs (dominant homozygous ) = p2
White pairs (recessive homozygous) = q2
Red-white pairs (heterozygous) = 2pq.

P2 + 2pq + q2 = 1

Calculate p = (2x red pairs + red-white pairs)/ total number of alleles (beans) = ?

q = (2x white pairs + red-white pairs)/total number of alleles (beans) = ?

p+q= ?

Return beans to bags and repeat the pairing two times, recording p2, 2pq and q2 each time.

1.2 Count:

Red pairs (dominant homozygous ) = p2
White pairs (recessive homozygous) = q2
Red-white pairs (heterozygous) = 2pq.
P2 + 2pq + q2 = 1

Calculate p = (2x red pairs + red-white pairs)/ total number of alleles (beans) = ?
q = (2x white pairs + red-white pairs)/total number of alleles (beans) = ?
p+q= ?

1.3 Count:
Red pairs (dominant homozygous ) = p2
White pairs (recessive homozygous) = q2
Red-white pairs (heterozygous) = 2pq.
P2 + 2pq + q2 = 1

Calculate p = (2x red pairs + red-white pairs)/ total number of alleles (beans) = ?
q = (2x white pairs + red-white pairs)/total number of alleles (beans) = ?
p+q= ?

Answer the following questions:

I. How much did your experimental data differ from the calculated data?
II. Do you accept or reject your hypothesis?

Experiment 2 :

Remove one bean from each bag blindly and set the pair aside. Repeat 10 times. This represents a loss of 10% of the population (migration).
Now repeat steps of experiment 1.

2.1 Count:

Red pairs (dominant homozygous ) = p2
White pairs (recessive homozygous) = q2
Red-white pairs (heterozygous) = 2pq.
P2 + 2pq + q2 = 1

Calculate p = (2x red pairs + red-white pairs)/ total number of alleles (beans) = ?
q = (2x white pairs + red-white pairs)/total number of alleles (beans) = ?
p+q= ?


Repeat three times, each time removing 10% of the pairs, so remove 9 and 8 pairs respectively. Keep the changing total number of beans in mind when calculating allele (bean) frequencies.

2.2 Count
Red pairs (dominant homozygous ) = p2
White pairs (recessive homozygous) = q2
Red-white pairs (heterozygous) = 2pq.
Calculate p = (2x red pairs + red-white pairs)/ total number of alleles (beans) = ?
q = (2x white pairs + red-white pairs)/total number of alleles (beans) =?
p+q= ?

2.3 Count
Red pairs (dominant homozygous ) = p2
White pairs (recessive homozygous) = q2
Red-white pairs (heterozygous) = 2pq.
Calculate, p and q. p + q = ?
Calculate p = (2x red pairs + red-white pairs)/ total number of alleles (beans) = ?
q = (2x white pairs + red-white pairs)/total number of alleles (beans) =?
p+q= ?

Answer the following questions:

I. How much did your experimental data differ from the calculated data?
II. Do you accept or reject your hypothesis?
III. Under what conditions is an allele within a population in Hardy Weinberg equilibrium?

Experiment 3

Remove one bean from each bag blindly and set the pair aside. Repeat until all beans are paired. Remove all white pairs (lost to predation) This represents natural selection.

3.1 Count

Red pairs (dominant homozygous ) = p2
White pairs (recessive homozygous) = q2
Red-white pairs (heterozygous) = 2pq.

Calculate p = (2x red pairs + red-white pairs)/ total number of alleles (beans) = ?
q = (2x white pairs + red-white pairs)/total number of alleles (beans) =?
p+q= ?

Write a hypothesis answering the following question:

What will happen to p and q if this selective pressure repeats in the next generation?

Work through another generation. Divide remaining beans equally and return to bags, and repeat the experiment.

3.2 Count

Red pairs (dominant homozygous ) = p2
White pairs (recessive homozygous) = q2
Red-white pairs (heterozygous) = 2pq.

Calculate p = (2x red pairs + red-white pairs)/ total number of alleles (beans) = ?
q = (2x white pairs + red-white pairs)/total number of alleles (beans) =?
p+q= ?

Answer the following questions:

I. How much did your experimental data differ from the calculated data?
II. Do you accept or reject your hypothesis?
III. How does natural selection affect allele frequencies?

Answer the following question in full sentences, at least 150 to 200 words.

What did you learn in this lab about the effects of population size, migration and natural selection on allele frequencies in populations? How do allele frequencies relate to evolution of species?

Statistics and Probability, Statistics

  • Category:- Statistics and Probability
  • Reference No.:- M91589586
  • Price:- $120

Guranteed 48 Hours Delivery, In Price:- $120

Have any Question?


Related Questions in Statistics and Probability

A professor teaches two statistics classes the morning

A professor teaches two statistics classes. The morning class has 25 students and their average on the first test was 82. The evening class has 15 students and their average on the same test was 74. What is the average o ...

The computer systems department has 8 faculty 6 are tenured

The computer systems department has 8 faculty, 6 are tenured. A committee is formed of 3 faculty members. If members are submitted at random: - What is the probability all members of the committee are tenured? - What is ...

A firm evaluates all of its projects by applying the irr

A firm evaluates all of its projects by applying the IRR rule. Year Cash Flow 0 -$ 153,000 1 78,000 2 67,000 3 49,000 What is the project's IRR? If the required return is 11 percent, should the firm accept the project? Y ...

In a recent year 8415394 male students and 4879215 female

In a recent year, 8,415,394 male students and 4,879,215 female students were enrolled as undergraduates. Receiving aid were 62.9% of the male students and 68.3% of female students. Of those receiving aid, 41.9% of the ma ...

In this question are you just using the empirical ruleyou

In this question are you just using the empirical rule? You know that your population is normally distributed with a mean of 100 and a standard deviation of 15. Using the empirical rule as a rough approximation, what is ...

Can someone help me determine how 1107 was obtainedin order

Can someone help me determine how 11.07 was obtained? In order to determine the Chi-Square Critical for the Chi-Square. You need to find out the Degrees of Freedom (DF)  DF = (Number of Rows - 1 * Number of Columns - 1) ...

A marketing organization claims that 10 of its employees

A marketing organization claims that 10% of its employees are paid minimum wage. If a hypothesis test is performed that fails to reject the null hypothesis, how would this decision be interpreted?

How does a market-maker decide the edge offset required to

How does a market-maker decide the edge (offset) required to perform an options trade? Explain why this edge would be different for options of different strikes as well as for option combinations?

Strip mining inc can develop a new mine at an initial cost

Strip Mining Inc. can develop a new mine at an initial cost of $11 million. The mine will provide a cash flow of $39 million in 1 year. The land then must be reclaimed at a cost of $32 million in the second year. a.  Wha ...

A city of flies has a population that doubles once every

A city of flies has a population that doubles once every day. The flies go extinct from overpopulation on the 30th day. On which day was the fly population halfway from extinction?

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As