Ask Applied Statistics Expert

1. Consider the following scenario for object recognition with two types of objects, A and B where the ultimate goal is to build a system that can recognize which of the two object types is present in front of a camera. To recognize the objects we make observations of 5 different properties of the objects, shape, color, size, texture, and labeling. Here we measure shape as either round or square, color as red or blue, size as small, medium, or large, texture as uniform or striped, and labeling as labeled or unlabeled.

Making observations of the two object types, we find the following:

Of all the objects, 70% are of type A and 30% of type B. 80% of objects of type A are large, 10% are medium, and 10% are small. Also, 40% are red while 60% are blue.Of objects of type B, 30% are large, 50% are medium, and 20% are small. Similarly, 80% are red while 20% are blue. For both object types there is no dependence between their size and their color. Of all the the small objects, 75% are round while of the medium objects only 35% are round and only 10% of the large objects. The texture depends on the color and the size , where the probability of a uniform texture is 30% for small and red objects, 10% for small and blue objects, 75% for medium and red objects, 40% for medium and blue objects, 90% for large and red objects, and 60% for large and blue objects. The likelihood of labeling on the objects is related to the texture and the shape. In particular, 80% of all square and uniform objects, 40% of the round and uniform objects, 30% of all square and striped objects, and 10% of all round and striped objects have labeling.

a) Construct a Bayesian Network for the object recognition scenario that encodes the information we have about the objects (you can assume that only the direct dependencies listed above are present). Provide the structure of the network as well as the conditional probability tables.

b) To perform object recognition with the network we would set the observations that we made and then infer the conditional probability of the different object types. Derive the probability of object type A given that we observe that the object is unlabeled, small, and red. Similarly, derive the probability of object type A given that we can observe that the object is striped, and large.

c) Using the network we can also infer properties of the objects that we could not observe before.
Infer the probability of an object being labeled given that it is blue and round. Also compute the prior probability of an object being labeled.
d) Bayesian Networks are not unique and can be rearranged into a different structure that nevertheless represents the same joint probability distribution. For the network in a), build an equivalent network in which the node for object type is a leaf node. In particular, build a network with the node order shape, color, size, texture, labeling, type, where the order indicates that only nodes earlier in the list can be parents to nodes later in the list. You should derive both the new structure and the new conditional probability tables.

2. Being able to generate samples from a particular distribution is an important ability to develop simulations and to evaluate algorithms. While most computers are equipped with random number generators to generate numbers from a uniform distribution, generators for other distributions have to be created. Often this can be done using the uniform random number generator.

a) Research has shown that the total number of (latent) disk errors on a hard drive (when drives without any errors are excluded) behaves approximately like a Pareto distribution ,

with a scale parameter, xm = 1 and a shape parameter, α, which depends on the particular type of hard drive. The Pareto distribution has the following probability density function:

α xαm x> xm
p(x:α,xm) = { xα+1

0 otherwise


For a disk with α = 0.5, construct and implement a random number generator that gen-erates samples according to this distribution using the system's built-in uniform random number generator. Describe the derivation of the random number generator.

b) Use the random number generator from part a) to generate a simulation that generates samples for the number of errors that a hard drive will encounter. Generate 400 samples and plot a histogram for the resulting distribution. Also use the samples to compute the expected number of errors that we would expect for a hard drive.

3. Monte-Carlo simulations can also be used to perform inference in Bayesian networks. Consider the following Bayesian network:

R : P (R | O ∧ T S) = 0.2

P(R | O ∧ ¬T S) = 0.4

P(R | ¬O ∧ T S) = 0.5

P(R | ¬O ∧ ¬T S) = 0.8

Indoors Large City Weather Forecast
(I) (C) (W)
Concrete Obstacles Thunderstorm
(O) (TS)

Strong Reception
(R)

1328_Implement random sampling from the exponential distribution.png

O : P (O | I ∧ C) = 0.7

P (O | I ∧ ¬C) = 0.4

P (O | ¬I ∧ C) = 0.5

P (O | ¬I ∧ ¬C) = 0.1

T S : P (T S | C ∧ W ) = 0.6

P (T S | C ∧ ¬W ) = 0.05

P (T S | ¬C ∧ W ) = 0.5

P (T S | ¬C ∧ ¬W ) = 0.1 I : P (I) = 0.6

C : P (C) = 0.7
W : P (W ) = 0.2

a) Implement sampling from an empty network to compute P (I ∧C ∧O∧W ∧T S ∧R). Print out the sampling-based estimate as well as the difference between the result of sampling and the actual probability for 20, 100, 200, and 400 samples.

b) Implement likelihood weighted sampling to compute P (T S|C, R, I). Again, show the results and the error for 20, 100, 200, and 400 samples.

4. Monte-Carlo simulations can be used to solve expected value problems.

a) Implement random sampling from the exponential distribution and use Monte-Carlo simulation to compute the mean, variance and skewness of the exponential distribution with λ = 0.5.

Show your estimates after 10, 50, and 100 samples.

b) Use Monte-Carlo simulation to visualize the central limit theorem by simulating the distribution of the means from the exponential and uniform distribution. In particular, for each of these original distributions sample averages over 5, 15, and 30 samples by drawing the corresponding number of samples and computing their average. Repeat this 100 times and plot the histograms of the resulting distributions of the means.

5. Confidence intervals can be used to indicate the variation in data as well as to determine how many different random simulations are necessary to ensure that the simulation error is within given bounds with high probability.

a) Given the following sample set: {2, 5, 3, 4, 3, 4, 2, 3, 4}, compute its average and the corresponding 95% confidence interval.

b) To bound the expected relative error that the simulation (i.e. the specific data set) introduces on the results of a given experiment, we want to determine the number of simulations we should run. For this, we first run 30 experiments, leading to data with a mean of 4.5 and a standard deviation of 2. Determine whether this data already provides an expected relative error introduced by the simulation of below 5%. If not, compute how many new simulations you should run in order to reduce the expected relative error introduced by the simulation below 5%.

Applied Statistics, Statistics

  • Category:- Applied Statistics
  • Reference No.:- M9314037

Have any Question?


Related Questions in Applied Statistics

Question onea a factory manager claims that workers at

QUESTION ONE (a) A factory manager claims that workers at plant A are faster than those at plant B. To test the claim, a random sample of times (in minutes) taken to complete a given task was taken from each of the plant ...

You are expected to work in groups and write a research

You are expected to work in groups and write a research report. When you work on your report, you need to use the dataset, and other sources such as journal articles. If you use website material, please pay attention to ...

Assignment -for each of the prompts below report the

Assignment - For each of the prompts below, report the appropriate degrees of freedom, t statistic, p-value and plot using the statistical software platform of your choice (R/STATA) 1) A sample of 12 men and 14 women hav ...

Assignment - research topicpurpose the purpose of this task

Assignment - Research topic Purpose: The purpose of this task is to ensure you are progressing satisfactorily with your research project, and that you have clean, useable data to analyse for your final project report. Ta ...

Assessment task -you become interested in the non-skeletal

Assessment Task - You become interested in the non-skeletal effects of vitamin D and review the literature. On the basis of your reading you find that there is some evidence to suggest that vitamin D deficiency is linked ...

Part a -question 1 - an analyst considers to test the order

PART A - Question 1 - An analyst considers to test the order of integration of some time series data. She decides to use the DF test. She estimates a regression of the form Δy t = μ + ψy t-1 + u t and obtains the estimat ...

Medical and applied physiology experimental report

Medical and Applied Physiology Experimental Report Assignment - Title - Compare the working and spatial memory by EEG. 30 students were tested (2 memory games were played to test their memory - a card game and a number g ...

Business data analysis computer assignment -part 1

Business Data Analysis Computer Assignment - PART 1 - Economists believe that high rates of unemployment are linked to decreased life satisfaction ratings. To investigate this relationship, a researcher plans to survey a ...

Question - go to the website national quality forum nqf

Question - Go to the website, National Quality Forum (NQF), located in the Webliography, and download the article by WIRED FOR QUALITY: The Intersection of Health IT and Healthcare Quality, Number 8, MARCH 2008. You are ...

Go to the webliography source for the national cancer

Go to the Webliography source for the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) Program. In the Fast Stats, create your own cancer statistical report, "Stratified by Data Type," and u ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As