+61-413 786 465

info@mywordsolution.com

## Economics

 Basic Economics Macroeconomics Microeconomics Business Economics Econometrics International Economics Managerial Economics Game Theory Public Economics

GROUP A
problem1)

An agent has a utility function over goods 1 and 2 of the form U= X1c X2d, where c is your individual number and d is your minimum number. The agent’s income is equal to your 2-digit number. The price of good 1 is your maximum number and the price of good 2 is your median number. Derive the agent’s demand functions for good 1 and good 2. find out the quantities of good 1 and good 2 in the agent’s optimum bundle.

problem2)

An agent has a utility function over goods 1 and 2 of the form U= X1c X2d, where c is your 1- digit number and d is your minimum number. The agent’s income is equal to your 2-digit number. Initially, the price of good 1 is your median number and the price of good 2 is your individual number.
Let the price of good 1 change to your maximum number. For good 1, determine for this price change the
a) total price effect
b) the substitution effect
c) the income effect

problem 3)

For the same problem you analysed in problem 2, find for that price change the
a) Laspeyres measure of the welfare change
b) Paasche measure of the welfare change
c) compensating variation
d) equivalent variation

GROUP B

problem 4)

a) Consider the problem you analysed in problem 2. Instead of the income value you used there, allow the agent to have an endowment of good 1 equal to the first digit of your 2- digit number, and an endowment of good 2 equal to the second digit of your 2-digit number. Derive expressions for the ordinary demands for both goods and find out the gross and net demands for each good.

b) An agent has a utility function over wealth given by U= W.5/c where c is your 1-digit number. Their wealth if not robbed is equal to your 2-digit number multiplied by 1000. Should they be robbed, their wealth will be your maximum number multiplied by 1000. They assess the probability of being robbed as 1/(median number x 10). How much would this agent be prepared to pay for full insurance? How much would they have to pay for full (actuarially) fair insurance?

problem 5)

Consider the two agents, A and B.

• Agent A has the utility function UA= X1c X2d where c is your minimum number and d is your median number. A’s endowment of good 1 is the first digit of your 2-digit number, and A’s endowment of good 2 is the second digit of your 2-digit number.
• Agent B has the utility function UA= X1c X2d where e is your maximum number and f is your 1-digit number. B’s endowment of good 1 is the second digit of your 2-digit number, and B’s endowment of good 2 is the first digit of your 2-digit number.
• The price of good 2 is your 1-digit number.

a) Find the equilibrium price for good 1 and the gross and net demands of both agents for goods 1 and 2.
b) Repeat the analysis for the cases where

i. the values of c and d are swapped for A, and e and f are swapped for B.
ii. the endowments of goods 1 and 2 are swapped for A, and the endowments of goods 1 and 2 are swapped for B [with c, d, e, f at their original – i.e part a) values].

problem6) Consider the two agents, A and B. Each can choose one of two strategies, 1 and 2. The payoffs for the various outcomes are illustrated below (A’s payoffs listed first in each cell):
Player B
Strategy 1            Strategy 2

Player A            Strategy 1            3.5, b                   c, 2.5

Strategy 2             e, f                      g, 1.5

where:
• b is your individual number
• c is your 1-digit number
• e is your median number
• f is the first digit of your 2-digit number
• g is the second digit of your 2-digit number

a) Assume that A and B act simultaneously. Find all equilibrium strategy combinations of this game, including, where appropriate, mixed-strategy equilibria. Show A and B’s equilibrium payoffs.
b) Reprepare this game in extensive form. Determine the equilibria and payoffs for the case in which A moves first, and the case in which B moves first.

GROUP C

problem7)

Consider a market in which all output is produced by two firms, A and B. The market inverse demand curve is given by P= a-bQ where a is your two-digit number x 10 and b is your individual number. Both firms have a constant marginal cost equal to your median number.
a) Find the Cournot equilibrium outputs for firms A and B, the equilibrium market price and the equilibrium profit for each firm.
b) Repeat for
i. the case where the marginal cost of firm B is constant and equal to your maximum number.
ii. The case where there are n firms with marginal cost equal to your median number. Find the output of each firm, the market price and each firm’s profit, where n is the sum of your individual number and your median number. [Hint: with identical costs each firm’s output will be the same].
iii. The case where there are two firms A and B and the marginal cost for firm A is mAQA (where mA is your minimum number) and the marginal cost for firm B is mBQB (where mB is your 1-digit number).

problem8). Consider a market in which all output is produced by two firms, A and B. The market inverse demand curve is given by P= a-bQ where a is your two-digit number x 10 and b is your individual number. Both firms have a constant marginal cost equal to your median number.
a) Find the Stackelberg equilibrium outputs for firms A and B, the equilibrium market price and the equilibrium profit for each firm, on the assumption that firm A is the leader and firm B is the follower.
b) Repeat for
i. the case where the marginal cost of firm B is constant and equal to your maximum number.
ii. The case where there are two firms A and B and the marginal cost for firm A is mAQA (where mA is your minimum number) and the marginal cost for firm B is mBQB (where mB is your 1-digit number).
iii. The above two cases on the assumption that B is the leader and A the follower.
problem9)

Consider a market a market for used cars in which cars can be either high-quality or lowquality. The demand for both types of car is perfectly elastic. The price buyers are willing to pay for a car known to be of low quality is your individual number x \$2000 and the price they are willing to pay for a car known to be of high quality is your maximum number x \$4000. Sellers are willing to accept a price equal to your minimum number x \$1000 for a car known to be of low quality, and to accept a price equal to your median number x \$3750 for a car known to be of high quality. The number of cars available for potential sale is equal to your 2-digit number x 200. The number of high-quality cars in that group is equal to your maximum number x 100. The supply of both cars is perfectly elastic up to the quantity of cars available.

What will be the outcome in the market in terms of the prices and quantities of cars of each type sold, the welfare gains from trade, and how those gains are distributed, is each of the following cases:
a) Information on quality is complete and symmetric.
b) Information on quality is zero and symmetric, and both buyers and sellers have the utility function U=V, where V is wealth.
c) Information on quality is complete for sellers but zero for buyers, and buyers have the utility function U=V.
d) Information on quality is complete for sellers but zero for buyers, and buyers have the utility function U=c ln v, where c is your 1-digit number.
For cases c and d above, find the maximum value of the sellers’ valuation of good-quality cars (given your original value of θ) that would allow a market for good-quality cars to exist. For the original sellers’ valuation of good cars find the minimum value of θ that would allow a market for good-quality cars to exist.

If the sellers of good quality cars in cases c and d were able to spend \$18000 on a certification process that buyers regarded as 100% credible, would they do so? If not, what would be the maximum amount they would be willing to pay?

problem10) Consider a good for which production generates external costs. Let the marginal external cost function be MEC=aE, where a is your 1-digit number, and E the quantity of emissions. The pollution can be abated at a cost. Let the marginal cost of abatement function be MCA=B-cE, where B is your 2-digit number and c is your median number.
a) Find the socially optimal level of emissions, and the optimal value of abatement costs and external cots.
b) If an emission fee were levied on producers, what would be the deadweight social loss associated with setting the fee at 90% of the correct value?
c) If an emission standard were enforced, what would be the deadweight social loss associated with setting the standard at 110% of the correct value?

Microeconomics, Economics

• Category:- Microeconomics
• Reference No.:- M9457

Have any Question?

## Related Questions in Microeconomics

### Question describe how might the three trends mentioned in

Question: Describe how might the three trends mentioned in Article (WSJ) Burberry, Richemont Sales Violin in Hong Kong, Paris, and actions by the IMF of organization in Article (WSJ) IMF Cuts 2016 Global Economic Growth ...

### Question describe a situation in which you were highly

Question: Describe a situation in which you were highly motivated to do well. What motivated you? Why? How did you perform? (select an example from work if you can otherwise use situation from school or a team you were o ...

### Question suppose the state of iowa passes a law that

Question: Suppose the state of Iowa passes a law that increases the price of cigarettes by \$1 per pack. As a result, residents in Iowa start purchasing their cigarettes in surrounding states. Which of the following princ ...

### Question in a linear demand equation what economic

Question: In a linear demand equation, what economic information is conveyed by the intercept on the price axis? Similarly, what economic information is conveyed by the intercept on the price axis in a linear supply equa ...

### Question - what is the maximum amount you would pay for an

Question - What is the maximum amount you would pay for an asset that generates an income of \$ 100,000 at the end of each of the four years of the opportunity cost of using funds is 10 percent?

### Question the current interest rate on one years indian

Question: The current interest rate on one year's Indian rupee deposit is 5% and yen deposit is 12%. The current yen/rupee exchange rate is 2 and after a year, it is expected to exceed 2.4. In this case, what currency wo ...

### Question do you think new economic policies should be

Question: Do you think new economic policies should be created to make our current and future healthcare system more competitive? If so, what are the 2-3 areas in the U.S. healthcare delivery system that need to be more ...

### Question please thoroughly and completely explain the

Question: Please thoroughly and completely explain the differences between transaction demand for money and the asset demand for money, and how they work together to determine the total demand for money. The response mus ...

### Discussion customs brokerswhy should individuals and firms

Discussion: Customs Brokers Why should individuals and firms use customs brokers when importing and exporting? What are the benefits? Your post must be at least 300 words, formatted and cited in proper APA style with sup ...

### Question suppose you have 5000 in savings when the price

Question: Suppose you have \$5,000 in savings when the price level index is at 100. (a) If inflation pushes the price level up by 10 percent, what will be the real value of your savings? (b) What is the real value of your ...

• 13,132 Experts

## Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

### Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

### Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

### Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of \$ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

### Compute the present value of an 1150 payment made in ten

Compute the present value of an \$1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

### Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of \$ 699 per year for 19 years, given a discount rate of 6 percent per annum. As