Ask Microeconomics Expert

The Schrodinger wave equation generalizes the fitting-in-of-waves procedure.

The waves that "fit" into the region to which the particle is contained can be recognized "by inspection" only for a few simple systems. For other problem a mathematical procedure must be used. The Schrodinger wave equation, suggested by Erwin Schrodinger in 1926, provides one method for doing this. You will see, when we again do the particle-on-a-line problem, that this equation extends the pictorial fitting-in-of-waves procedure.

Think of the method in which the Schrodinger equation is used as the counterpart of the more familiar classical parts in which Newton's laws are used. Recall that equations, such as ƒ = ma, based on Newton's law are presented without derivation. These laws let us calculate the dynamic behavior of ordinary objects. We accept Newton's laws and the equation derived from because the results are agree from experiment. Schrodinger's equation is also presented without derivation. We accept the results that we obtain by using it because in all cases where the results have been tested, they have been in agreement with experiment. Just as one uses and trusts ƒ = ma, so one must use and, to the extent that seems justified, trust the Schrodinger equation.

The Schrodinger equation, as with the direct use of the de Broglie waves, leads to waves from which all other information follows. From these waves, we obtain immediately the allowed energies of any confined particle and the probability of the particle being at various positions.

We begin by writing the form of the Schrodinger equation that lets us deduce the waves, and then the energies and position probabilities, for a particle that moves along one dimension. Let x be the variable that locates positions along this dimension. The behavior of the particle depends on the potential energy that it would have at various positions. Let U (x) be the mathematical function that describes the potential energy. The Schrodinger equation requires us to supply this function and to indicate the mass m of the particle being treated.

Solutions of the Schrodinger equation are in the form of mathematical functions that shows the amplitude of the wave at various x places. The square of this function gives the relative probability of the particles being at various positions. The energies for which these probabilities of the particles exist are the energies "allowed" to the particle.

The Schrodinger equation can be viewed as a method in which wave properties yield the total energy of a particle as the sum of its potential and kinetic energies. The potential energy contribution is given by the Schrodinger equation as a "weighting" of the potential energy at each position according to the value of the wave function at that position. The kinetic energy contribution of the first term can be appreciated by reference to the particle on a line results. The particle-on-a-line example produced the quite general result that waves for the highest energy of the wave function, the greater the kinetic energy, the greater the curvature of the wave function.

The general energy relation:

KE + PE = total energy

Becomes the one-dimensional Schrodinger equation;

-h2/8∏2m Χ d2?/dx2 + U(x)v = ε?

The potential energy contribution is given by the Schrodinger equation as a "weighting" of the potential energy at each position according to the value of the wave function amplitude at that position.

The kinetic-energy contribution fo the first term can be appreciated by reference to the particle-on-a-line results. The particle-on-a-line example produced the quite general result that the waves for the higher energy states had more nodes than the waves for the greater the curvature of the wave function, the greater the kinetic energy. This shows up in the Schrodinger equation as a relation between the second derivate of the wave function and the kinetic energy.

The behavior of a particle is deduced by finding a function and the kinetic energy will solve the differential equation after an appropriate expression for U (x) has been substituted. Solution functions generally exist for certain values for the allowed energies of the particle. The probability function also obtained from the solution function. In general may be either a real or a complex function. To allow for the second possibility, we should write not a sign but where implies the product of the wave function and its complex conjugate. Here we do not deal with problems that lead to complex wave functions. The probability is given by the simple squared term. 

Expertsmind.com offers unique solutions for chemistry assignments

Microeconomics, Economics

  • Category:- Microeconomics
  • Reference No.:- M9503341

Have any Question?


Related Questions in Microeconomics

Question show the market for cigarettes in equilibrium

Question: Show the market for cigarettes in equilibrium, assuming that there are no laws banning smoking in public. Label the equilibrium private market price and quantity as Pm and Qm. Add whatever is needed to the mode ...

Question recycling is a relatively inexpensive solution to

Question: Recycling is a relatively inexpensive solution to much of the environmental contamination from plastics, glass, and other waste materials. Is it a sound policy to make it mandatory for everybody to recycle? The ...

Question consider two ways of protecting elephants from

Question: Consider two ways of protecting elephants from poachers in African countries. In one approach, the government sets up enormous national parks that have sufficient habitat for elephants to thrive and forbids all ...

Question suppose you want to put a dollar value on the

Question: Suppose you want to put a dollar value on the external costs of carbon emissions from a power plant. What information or data would you obtain to measure the external [not social] cost? The response must be typ ...

Question in the tradeoff between economic output and

Question: In the tradeoff between economic output and environmental protection, what do the combinations on the protection possibility curve represent? The response must be typed, single spaced, must be in times new roma ...

Question consider the case of global environmental problems

Question: Consider the case of global environmental problems that spill across international borders as a prisoner's dilemma of the sort studied in Monopolistic Competition and Oligopoly. Say that there are two countries ...

Question consider two approaches to reducing emissions of

Question: Consider two approaches to reducing emissions of CO2 into the environment from manufacturing industries in the United States. In the first approach, the U.S. government makes it a policy to use only predetermin ...

Question the state of colorado requires oil and gas

Question: The state of Colorado requires oil and gas companies who use fracking techniques to return the land to its original condition after the oil and gas extractions. Table 12.9 shows the total cost and total benefit ...

Question suppose a city releases 16 million gallons of raw

Question: Suppose a city releases 16 million gallons of raw sewage into a nearby lake. Table shows the total costs of cleaning up the sewage to different levels, together with the total benefits of doing so. (Benefits in ...

Question four firms called elm maple oak and cherry produce

Question: Four firms called Elm, Maple, Oak, and Cherry, produce wooden chairs. However, they also produce a great deal of garbage (a mixture of glue, varnish, sandpaper, and wood scraps). The first row of Table 12.6 sho ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As