Ask Macroeconomics Expert

The Carolina Cougars Case Study

The Carolina Cougars is a major league baseball expansion team beginning its third year of operation. The team had losing records in each of its first 2 years and finished near the bottom of its division. However, the team was young and generally competitive. The team’s general manager, Frank Lane, and manager, Biff Diamond, believe that with a few additional good players, the Cougars can become a contender for the division title and perhaps even for the pennant. They have prepared several proposals for freeagent acquisitions to present to the team’s owner, Bruce Wayne. Under one proposal the team would sign several good available free agents, including two pitchers, a good fielding shortstop, and two power-hitting outfielders for $52 million in bonuses and annual salary. The second proposal is less ambitious, costing $20 million to sign a relief pitcher, a solid, good-hitting infielder, and one power-hitting outfielder. The final proposal would be to stand pat with the current team and continue to develop. General Manager Lane wants to lay out a possible season scenario for the owner so he can assess the long-run ramifications of each decision strategy. Because the only thing the owner understands is money, Frank wants this analysis to be quantitative, indicating the money to be made or lost from each strategy. To help develop this analysis, Frank has hired his kids, Penny and Nathan, both management science graduates from Tech. Penny and Nathan analyzed league data for the previous five seasons for attendance trends, logo sales (i.e., clothing, souvenirs, hats, etc.), player sales and trades, and revenues. In addition, they interviewed several other owners, general managers, and league officials. They also analyzed the free agents that the team was considering signing. Based on their analysis, Penny and Nathan feel that if the Cougars do not invest in any free agents, the team will have a 25% chance of contending for the division title and a 75% chance of being out of contention most of the season. If the team is a contender, there is a .70 probability that attendance will increase as the season progresses and the team will have high attendance levels (between 1.5 million and 2.0 million) with profits of $170 million from ticket sales, concessions, advertising sales, TV and radio sales, and logo sales. They estimate a .25 probability that the team’s attendance will be mediocre (between 1.0 million and 1.5 million) with profits of $115 million and a .05 probability that the team will suffer low attendance (less than 1.0 million) with profit of $90 million. If the team is not a contender, Penny and Nathan estimate that there is .05 probability of high attendance with profits of $95 million, a .20 probability of medium attendance with profits of $55 million, and a .75 probability of low attendance with profits of $30 million. If the team marginally invests in free agents at a cost of $20 million, there is a 50–50 chance it will be a contender. If it is a contender, then later in the season it can either stand pat with its existing roster or buy or trade for players that could improve the team’s chances of winning the division. If the team stands pat, there is a .75 probability that attendance will be high and profits will be $195 million. There is a .20 probability that attendance will be mediocre with profits of $160 million and a .05 probability of low attendance and profits of $120 million. Alternatively, if the team decides to buy or trade for players, it will cost $8 million, and the probability of high attendance with profits of $200 million will be .80. The probability of mediocre attendance with $170 million in profits will be .15, and there will be a .05 probability of low attendance, with profits of $125 million. If the team is not in contention, then it will either stand pat or sell some of its players, earning approximately $8 million in profit. If the team stands pat, there is a .12 probability of high attendance, with profits of $110 million; a .28 probability of mediocre attendance, with profits of $65 million; and a .60 probability of low attendance, with profits of $40 million. If the team sells players, the fans will likely lose interest at an even faster rate, and the probability of high attendance with profits of $100 million will drop to .08, the probability of mediocre attendance with profits of $60 million will be .22, and the probability of low attendance with profits of $35 million will be .70. The most ambitious free-agent strategy will increase the team’s chances of being a contender to 65%. This strategy will also excite the fans most during the off-season and boost ticket sales and advertising and logo sales early in the year. If the team does contend for the division title, then later in the season it will have to decide whether to invest in more players. If the Cougars stand pat, the probability of high attendance with profits of $210 million will be .80, the probability of mediocre attendance with profits of $170 million will be .15, and the probability of low attendance with profits of $125 million will be .05. If the team buys players at a cost of $10 million, then the probability of having high attendance with profits of $220 million will increase to .83, the probability of mediocre attendance with profits of $175 million will be .12, and the probability of low attendance with profits of $130 million will be .05. If the team is not in contention, it will either sell some players’ contracts later in the season for profits of around $12 million or stand pat. If it stays with its roster, the probability of high attendance with profits of $110 million will be .15, the probability of mediocre attendance with profits of $70 million will be .30, and the probability of low attendance with profits of $50 million will be .55. If the team sells players late in the season, there will be a .10 probability of high attendance with profits of $105 million, a .30 probability of mediocre attendance with profits of $65 million, and a .60 probability of low attendance with profits of $45 million.

Assist Penny and Nathan in determining the best strategy to follow and its expected value.

Macroeconomics, Economics

  • Category:- Macroeconomics
  • Reference No.:- M92311708

Have any Question?


Related Questions in Macroeconomics

Economics assignment -topic evaluation of macroeconomic

Economics Assignment - Topic: Evaluation of Macroeconomic performance of Australia and New Zealand. Task Details: Complete a research-based analysis and evaluation of the relative macroeconomic performance of Australia a ...

Introductory economics assignment -three problem-solving

Introductory Economics Assignment - Three Problem-Solving Questions. Question 1 - Australia and Canada have a free trade agreement in which, Australia exports beef to Canada. a. Draw a graph and use it to explain and ill ...

Question in an effort to move the economy out of a

Question: In an effort to move the economy out of a recession, the federal government would engage in expansionary economic policies. Respond to the following points in your paper on the actions the government would take ...

Question are shareholders residual claimants in a publicly

Question: Are shareholders residual claimants in a publicly traded corporation? Why or why not? In some industries, like hospitals, for-profit producers compete with nonprofit ones. Who is the residual claimant in a nonp ...

Discussion questionsquestion 1 what are the main reasons

Discussion Questions Question 1: What are the main reasons why Nigerians living in extreme poverty? Justify. ( 7) Question 2: Why GDP per capita wouldn't be an accurate measure of the welfare of the average Nigerian? Exp ...

Question according to the definition a perfectly

Question: According to the definition, a perfectly competitive firm cannot affect the market price by any changing only its own output. Producer No. 27 in problem 2 decides to experiment by producing only 8 units. a. Wha ...

Question jones is one of 100000 corn farmers in a perfectly

Question: Jones is one of 100,000 corn farmers in a perfectly competitive market. What will happen to the price she can charge if: a. The rental price on all farmland increases as urbanization turns increasing amounts of ...

Question good x is produced in a perfectly competitive

Question: Good X is produced in a perfectly competitive market using a single input, Y, which is itself also supplied by a perfectly competitive industry. If the government imposes a price ceiling on Y, what happens to t ...

Question pepsico produces both a cola and a major brand of

Question: PepsiCo produces both a cola and a major brand of potato chips. Coca-Cola produces only drinks. When might it make sense for PepsiCo to divest its potato chip operations? For Coca-Cola to begin manufacturing sn ...

Question again demand is qd 32 - 15p and supply is qs -20

Question: Again, demand is QD = 32 - 1.5P and supply is QS = -20 + 2.5P. Now, however, buyers and sellers have transaction costs of $2 and $3 per unit, respectively. Compare the equilibrium values with those you calculat ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As