Ask Econometrics Expert

Econometrics Assignment -

QUESTION 1 -

Consider again the following demand and supply equations ((1.1) and (1.2) below, respectively) for truffles

Qi = β0 + β1Pi + β2PSi + β3DIi + u1,i, (1.1)

Qi = γ0 + γ1Pi + γ2PFi + u2,i, (1.2)

where the variables are:

Qi: quantity of truffles, in ounces, traded in a particular French market place (indexed by i);

Pi: price of truffles, in dollars per ounce ($/ounce);

PSi: price of a truffles substitute ($/ounce);

DIi: per capita monthly disposable income of local residents, in $000s;

PFi: price of a factor of production (hourly rental price of truffle pigs), $;

and u1,i and u2,i are error terms.

Note: in this question, (*) means that you are required to report in a table in Appendix A the regression results on which the test is based, not the test output itself.

Using the data in the file truffles.csv:

(a) (*) Test for instrument relevance. Interpret the result.

(b) (*) Test any over identifying restriction(s). Report the p-value for the test.

(c) Interpret the result of the test performed in (b) above.

(d) (*) Estimate a regression to predict the quantity of truffles demanded at a price of $50 per ounce-with PSi and DIi set to their sample means-and obtain a 95% confidence interval for that prediction. Report the prediction and interval.

QUESTION 2 -

The reduced form equations for the simultaneously determined variables Yi and Xi:

Yi = (1 + π)Wi + (1 + π)Zi +v1,i (2.1)

Xi = (1 + π)Wi + Xi + v2,i (2.2)

where E(v1,i|Wi,Zi) = E(v2,i|Wi,Zi) = 0, v1,i and v2,i are uncorrelated and π is a positive parameter (π > 0).

The structural equations corresponding to (2.1) and (2.2) have the form

Yi = α1Xi + β1Zi = u1,i (2.3)

Xi = α2Yi + β2Wi + u2,i (2.4)

The following assumptions and settings used to perform the simulations based on 1,000 replications are to be used again:

  • The true DGP is given by (2.1) and (2.2)
  • The parameter of interest is α1
  • (2.3) is estimated separately by OLS and 2SLS using Wi and Zi as instruments
  • Wi ∼ iid N(0, 1), Zi ∼ iid N(0, 1), v1,i ∼ iid N(0, 1), v2,i ∼ iid N (0, 1)
  • the sample size (n) is 100

In this question, the task is to compute by simulation the rejection frequencies for H0: α1 = 1 vs. H1: α1 ≠ 1 under 2SLS and OLS, assuming a 5% level of significance.

(a) Report the rejection frequencies in a table as formatted below (please set seed of 12):

Table Q2. Rejection frequencies for H0: α1 = 1, with varying π (1,000 replications)  

π

2SLS

OLS

1

 

 

4

 

 

10

 

 

Note: Each cell entry is the proportion of times out of 1,000 that α1 = 1 is rejected at the 5% level.

(b) Comment on both sets of results (2SLS and OLS) and explain why they differ (or do not).

QUESTION 3 -

This question uses crime.csv, which is an abridged version of the dataset used by Baltagi (2006) to analyse determinants of the crime rate, comprising data on 90 counties in North Carolina from 1980 to 1987 (total sample size 630). Except for the regional dummies (westi, centrali and urbani), the variables in the dataset (listed below) are all in natural logs. In the datafile, the cross-section identifier is "county" and the time-series identifier is "year". In the list of variables below, the first is the dependent variable; all others are independent variables. The i and t subscripts denote county and year, respectively.

cri,t crimes committed per person

pai,t 'probability' of arrest

pci,t 'probability' of conviction

ppi,t 'probability' of prison sentence

si,t average prison sentence, in days

policei,t police per capita

densityi,t people per square mile

westi =1 if county in western North Carolina, 0 otherwise

centrali = 1 if in central North Carolina, 0 otherwise

urbani = 1 if county in metropolitan area, 0 otherwise

minorityi percentage of population in county from minority groups, 1980

wconi,t weekly wage, construction

wtuci,t weekly wage, transport, utilities and communications

wtrdi,t weekly wage, wholesale and retail trade

wfiri,t weekly wage, finance, insurance and real estate

wseri,t weekly wage, services industry

wmfgi,t weekly wage, manufacturing

wfedi,t weekly wage, Federal employees

wstai,t weekly wage, state employees

wloci,t weekly wage, local government employees

malei,t percentage in county that are young males

In the above list, independent variables such as pai,t, pci,t, ppi,t, si,t and policei,t  are thought of as 'deterrence' variables (for obvious reasons) and the weekly wage by industry variables are thought of as representing returns to legal opportunities (hereafter, 'opportunity' variables); i.e., getting a wage rather than committing crime! Others are miscellaneous control variables.

(a) Regress the dependent variable on all the other variables using the pooled OLS estimator. Report the estimated coefficient on pai,t and its standard error.

(b) Regress the dependent variable on all the other variables using the within estimator with cross-section fixed effects only. Report the estimated coefficient on pai,t and its standard error.

(c) Regress the dependent variable on all the other variables using the within estimator with time fixed effects only. Report the estimated coefficient on pai,t and its standard error.

(d) Regress the dependent variable on all the other variables using the within estimator with two-way fixed effects. Report the estimated coefficient on pai,t and its standard error.

(e) What does a comparison of the coefficient estimates cited in (a), (b), (c) and (d) above suggest to you about the relative importance of unobserved cross-section fixed effects and unobserved time fixed effects, and why?

Base your answers to the remaining parts on the two-way fixed effects results.

(f) Interpret the estimated coefficient of any 'deterrence' variable that is statistically significant at 1% and has the expected sign.

(g) Interpret the estimated coefficient of any 'opportunity' variable that is statistically significant at 1% and has the expected sign.

(h) Name any 'deterrence' variable that has an estimated coefficient that is statistically significant at 1% and has the opposite of the expected sign. Suggest a reason for the unexpected sign.

(i) Explain what might be done econometrically to resolve the incorrect sign problem referred to in (h) above. Describe any proposed additional variables(s) needed to implement this strategy in practice.

(j) Suggest a relevant variable that might have been excluded from the model and explain why it should be included.

QUESTION 4 -

This question uses panel data on the wages (in dollars per hour in real terms), work experience (in years) and skin colour of 545 males for each of the years 1980-1987 to estimate the following one-way fixed effects model using the within estimator:

Wi,t = αi + β1log(Xi,t) + β2Bi + β3(Bilog(Xi,t)) + Ui,t,

where Wi,t is male i's wage in year t, Xi,t is his work experience in year t, and Bi =1 if he is black (0 otherwise).

The results are shown in Table 4.1 below, in which heteroskedasticity-consistent standard errors are in brackets.

Table 4.1: Estimation results

Dependent variable

Wi,t

log(Xi,t)

2.0544***

 

(0.1273)

Bilog(Xi,t)

-0.8008**

 

(0.2619)

R2

0.1796

Adj. R2

0.0621

Num. obs.

4358

*** p < 0.001, ** p < 0.01, *p < 0.05

(a) Why are there only two estimated coefficients in Table 4.1? Also provide some rationale for logging the experience variable.

(b) Interpret the coefficient estimates in Table 4.1.

Attachment:- Assignment File.rar

Econometrics, Economics

  • Category:- Econometrics
  • Reference No.:- M93095148

Have any Question?


Related Questions in Econometrics

Monte carlo exercisein order to illustrate the sampling

Monte Carlo Exercise In order to illustrate the sampling theory for the least squares estimator, we will perform a Monte Carlo experiment based on the following statistical model and the attached design matrix y = Xβ + e ...

Economics and quantitative analysis linear regression

Economics and Quantitative Analysis Linear Regression Report Assignment - Background - In your role as an economic analyst, you have been asked the following question: how much does education influence wages? The Excel d ...

Basic econometrics research report group assignment -this

Basic Econometrics Research Report Group Assignment - This assignment uses data from the BUPA health insurance call centre. Each observation includes data from one call to the call centre. The variables describe several ...

Question - consider the following regression model for i 1

Question - Consider the following regression model for i = 1, ..., N: Yi = β1*X1i + β2*X2i + ui Note that there is no intercept in this model (so it is assumed that β0 = 0). a) Write down the least squares function minim ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As